Menu Close

1-a-bi-x-dx-




Question Number 56169 by MJS last updated on 11/Mar/19
∫^1 _(−∞) (a+bi)^x dx=?
1(a+bi)xdx=?
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
∫p^x dx=(p^x /(lnp))+c  but log_e (a+ib)=(1/2)log(a^2 +b^2 )+i(2nπ+tan^(−1) (b/a))  so  ∣(a+ib)^x ∣_(−∞) ^1 /[(1/2)log_e (a^2 +b^2 )+i(2nπ+tan^(−1) (b/a))]  (a+ib)/[(1/(2l))log_e (a^2 +b^2 )+i(2nπ+tan^(−1) (b/a))  i have rectified...
pxdx=pxlnp+cbutloge(a+ib)=12log(a2+b2)+i(2nπ+tan1ba)so(a+ib)x1/[12loge(a2+b2)+i(2nπ+tan1ba)](a+ib)/[12lloge(a2+b2)+i(2nπ+tan1ba)ihaverectified
Commented by Smail last updated on 11/Mar/19
∫p^x dx=∫e^(xlnp) dx=(1/(lnp))e^(xlnp) +c  =(p^x /(lnp))+c
pxdx=exlnpdx=1lnpexlnp+c=pxlnp+c
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
yes sir you are right...
yessiryouareright
Commented by MJS last updated on 11/Mar/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *