Menu Close

1-a-m-b-m-1-ab-m-1-2-c-ab-and-c-a-1-c-b-3-If-c-is-a-common-multiple-of-a-and-b-then-a-b-c-4-ma-mb-m-a-b-for-all-int-m-gt-0-5-a-b-a-b-ab-6-Let-g-gt-0-s-be-integers-Sh




Question Number 124944 by udaythool last updated on 07/Dec/20
1. (a, m)=(b, m)=1⇒(ab, m)=1  2. c∣ab and (c, a)=1⇒c∣b  3. If c is a common multiple of  a and b then [a, b]∣c  4. [ma, mb]=m[a, b] for all int m>0  5. [a, b](a, b)=∣ab∣  6. Let g>0, s be integers. Show  that g∣s iff ∃ integers x, y such  that s=x+y and (x, y)=g
1.(a,m)=(b,m)=1(ab,m)=12.caband(c,a)=1cb3.Ifcisacommonmultipleofaandbthen[a,b]c4.[ma,mb]=m[a,b]forallintm>05.[a,b](a,b)=∣ab6.Letg>0,sbeintegers.Showthatgsiffintegersx,ysuchthats=x+yand(x,y)=g

Leave a Reply

Your email address will not be published. Required fields are marked *