Menu Close

1-a-m-b-m-1-ab-m-1-2-c-ab-and-c-a-1-c-b-3-If-c-is-a-common-multiple-of-a-and-b-then-a-b-c-4-ma-mb-m-a-b-for-all-int-m-gt-0-5-a-b-a-b-ab-6-Let-g-gt-0-s-be-integers-Sh




Question Number 124944 by udaythool last updated on 07/Dec/20
1. (a, m)=(b, m)=1⇒(ab, m)=1  2. c∣ab and (c, a)=1⇒c∣b  3. If c is a common multiple of  a and b then [a, b]∣c  4. [ma, mb]=m[a, b] for all int m>0  5. [a, b](a, b)=∣ab∣  6. Let g>0, s be integers. Show  that g∣s iff ∃ integers x, y such  that s=x+y and (x, y)=g
$$\mathrm{1}.\:\left({a},\:{m}\right)=\left({b},\:{m}\right)=\mathrm{1}\Rightarrow\left({ab},\:{m}\right)=\mathrm{1} \\ $$$$\mathrm{2}.\:{c}\mid{ab}\:\mathrm{and}\:\left({c},\:{a}\right)=\mathrm{1}\Rightarrow{c}\mid{b} \\ $$$$\mathrm{3}.\:\mathrm{If}\:{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{common}\:\mathrm{multiple}\:\mathrm{of} \\ $$$${a}\:\mathrm{and}\:{b}\:\mathrm{then}\:\left[{a},\:{b}\right]\mid{c} \\ $$$$\mathrm{4}.\:\left[{ma},\:{mb}\right]={m}\left[{a},\:{b}\right]\:\mathrm{for}\:\mathrm{all}\:\mathrm{int}\:{m}>\mathrm{0} \\ $$$$\mathrm{5}.\:\left[{a},\:{b}\right]\left({a},\:{b}\right)=\mid{ab}\mid \\ $$$$\mathrm{6}.\:\mathrm{Let}\:{g}>\mathrm{0},\:{s}\:\mathrm{be}\:\mathrm{integers}.\:\mathrm{Show} \\ $$$$\mathrm{that}\:{g}\mid{s}\:\mathrm{iff}\:\exists\:\mathrm{integers}\:{x},\:{y}\:\mathrm{such} \\ $$$$\mathrm{that}\:{s}={x}+{y}\:\mathrm{and}\:\left({x},\:{y}\right)={g} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *