Menu Close

1-A-plane-contains-the-lines-x-1-2-4-y-2-z-2-3-and-r-2i-2j-12k-t-i-2j-4k-find-a-the-angle-between-these-lines-b-A-cartesian-equation-of-the-plane-2-Given-the-lines-l-1-




Question Number 63427 by Rio Michael last updated on 04/Jul/19
(1) A plane contains the lines ((x+1)/2)=((4−y)/2)=((z−2)/3) and   r= (2i+2j + 12k)+t(−i+2j +4k). find  (a) the angle between these lines.  (b) A cartesian equation of the plane.  (2) Given the lines l_1 :((x−10)/3)=((y−1)/1)=((z−9)/4)  l_2 :r=(−9j+13k)+μ(i+2j−3k)  where μ is a parameter; l_3 :((x+10)/4)=((y+5)/3)=((z+4)/1).  a) show that the point (4,−1,1) is common to l_1  and l_2 . Find  b) the point of intersection of l_2  and l_3 .  c) A vector parametric equation of the plane containing the  lines l_2  and l_3 .  sir Forkum Michael
(1)Aplanecontainsthelinesx+12=4y2=z23andr=(2i+2j+12k)+t(i+2j+4k).find(a)theanglebetweentheselines.(b)Acartesianequationoftheplane.(2)Giventhelinesl1:x103=y11=z94l2:r=(9j+13k)+μ(i+2j3k)whereμisaparameter;l3:x+104=y+53=z+41.a)showthatthepoint(4,1,1)iscommontol1andl2.Findb)thepointofintersectionofl2andl3.c)Avectorparametricequationoftheplanecontainingthelinesl2andl3.sirForkumMichael
Commented by Tony Lin last updated on 04/Jul/19
(2)(b)  let { ((l_2 :(x/1)=((y+9)/2)=((z−13)/(−3))=μ)),((l_3 :((x+10)/4)=((y+5)/3)=((z+4)/1)=s)) :}  ⇒μ=−10+4s       −9+2μ=−5+3s       13−3μ=−4+s  ⇒no solution to the eqations  ⇒l_2  &l_3  are skew lines  ⇒there is no point of intersection of l_(2 ) & l_3   (2)(c)  ∵l_2 & l_3  are skew lines  ∴there is no plane containing the lines
(2)(b)let{l2:x1=y+92=z133=μl3:x+104=y+53=z+41=sμ=10+4s9+2μ=5+3s133μ=4+snosolutiontotheeqationsl2&l3areskewlinesthereisnopointofintersectionofl2&l3(2)(c)l2&l3areskewlinesthereisnoplanecontainingthelines
Commented by Tony Lin last updated on 04/Jul/19
(1)(a)  (1)cosθ=(((2, −2, 3)∙(−1, 2, 4))/( (√(2^2 +(−2)^2 +3^2 ))(√(1^2 +2^2 +4^2 ))))=(6/( (√(357))))  ⇒θ=cos^(−1) ((6/( (√(357)))))  (1)(b)  n_E ^⇀ =(2, −2, 3)×(−1, 2, 4)=(−14,−11, 2)  and (−1, 4, 2), (2, 2, 12)is on the plane  ⇒E: 14x+11y−2z=26
(1)(a)(1)cosθ=(2,2,3)(1,2,4)22+(2)2+3212+22+42=6357θ=cos1(6357)(1)(b)nE=(2,2,3)×(1,2,4)=(14,11,2)and(1,4,2),(2,2,12)isontheplaneE:14x+11y2z=26
Commented by Tony Lin last updated on 04/Jul/19
(2)(a)  let  { ((l_1 :((x−10)/3)=((y−1)/1)=((z−9)/4)=t)),((l_2 :(x/1)=((y+9)/2)=((z−13)/(−3))=μ)) :}  ⇒10+3t=μ       1+t=−9+2μ       9+4t=13−3μ  ⇒t=−2, μ=4  ⇒(4, −1, −1)       is the point of intersection of l_1 &l_2
(2)(a)let{l1:x103=y11=z94=tl2:x1=y+92=z133=μ10+3t=μ1+t=9+2μ9+4t=133μt=2,μ=4(4,1,1)isthepointofintersectionofl1&l2
Commented by Rio Michael last updated on 04/Jul/19
perfect.
perfect.

Leave a Reply

Your email address will not be published. Required fields are marked *