Menu Close

1-bf-x-f-x-p-a-solve-this-equation-find-f-x-




Question Number 159982 by ArielVyny last updated on 23/Nov/21
(1+bf(x))f′′(x)=(p/(λa))  solve this equation: find  f(x)
$$\left(\mathrm{1}+{bf}\left({x}\right)\right){f}''\left({x}\right)=\frac{{p}}{\lambda{a}} \\ $$$${solve}\:{this}\:{equation}:\:{find}\:\:{f}\left({x}\right) \\ $$
Answered by mr W last updated on 23/Nov/21
let y′=u  y′′=(du/dx)=(du/dy)×(dy/dx)=u(du/dy)  (1+by)u(du/dy)=(p/(λa))  udu=((pdy)/(λa(1+by)))  ∫udu=(p/(λa))∫(dy/(1+by))  (u^2 /2)=(p/(λab))ln C(1+by)  u=±(√((2p)/(λab))) (√(ln C(1+by)))  (dy/dx)=±(√((2p)/(λab))) (√(ln C(1+by)))  (dy/( (√(ln C(1+by)))))=±(√((2p)/(λab))) dx  ∫(dy/( (√(ln C(1+by)))))=±(√((2p)/(λab))) x+D  ∫((d(1+by))/( (√(ln C(1+by)))))=±(√((2pb)/(λa))) x+D  (((√π) erfi((√(ln C(1+by)))))/C)=±(√((2pb)/(λa))) x+D
$${let}\:{y}'={u} \\ $$$${y}''=\frac{{du}}{{dx}}=\frac{{du}}{{dy}}×\frac{{dy}}{{dx}}={u}\frac{{du}}{{dy}} \\ $$$$\left(\mathrm{1}+{by}\right){u}\frac{{du}}{{dy}}=\frac{{p}}{\lambda{a}} \\ $$$${udu}=\frac{{pdy}}{\lambda{a}\left(\mathrm{1}+{by}\right)} \\ $$$$\int{udu}=\frac{{p}}{\lambda{a}}\int\frac{{dy}}{\mathrm{1}+{by}} \\ $$$$\frac{{u}^{\mathrm{2}} }{\mathrm{2}}=\frac{{p}}{\lambda{ab}}\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right) \\ $$$${u}=\pm\sqrt{\frac{\mathrm{2}{p}}{\lambda{ab}}}\:\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)} \\ $$$$\frac{{dy}}{{dx}}=\pm\sqrt{\frac{\mathrm{2}{p}}{\lambda{ab}}}\:\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)} \\ $$$$\frac{{dy}}{\:\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)}}=\pm\sqrt{\frac{\mathrm{2}{p}}{\lambda{ab}}}\:{dx} \\ $$$$\int\frac{{dy}}{\:\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)}}=\pm\sqrt{\frac{\mathrm{2}{p}}{\lambda{ab}}}\:{x}+{D} \\ $$$$\int\frac{{d}\left(\mathrm{1}+{by}\right)}{\:\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)}}=\pm\sqrt{\frac{\mathrm{2}{pb}}{\lambda{a}}}\:{x}+{D} \\ $$$$\frac{\sqrt{\pi}\:{erfi}\left(\sqrt{\mathrm{ln}\:{C}\left(\mathrm{1}+{by}\right)}\right)}{{C}}=\pm\sqrt{\frac{\mathrm{2}{pb}}{\lambda{a}}}\:{x}+{D} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *