Menu Close

1-calculate-0-1-0-pi-2-dxdy-1-xtany-2-2-find-the-value-of-0-pi-2-t-tant-dt-




Question Number 27693 by abdo imad last updated on 12/Jan/18
1) calculate  ∫∫_(]0,1]×]0,(π/2)])    ((dxdy)/(1+(xtany)^2 ))  2) find the value of  ∫_0 ^(π/2)   (t/(tant))dt .
1)calculate]0,1]×]0,π2]dxdy1+(xtany)22)findthevalueof0π2ttantdt.
Commented by abdo imad last updated on 13/Jan/18
1)let put I= ∫∫_(]0,1]×]0,(π/2)])   ((dxdy)/(1+(xtany)^2 ))  I= ∫_0 ^1   (∫_0 ^(π/2)  (dy/(1+x^2 tan^2 y)))dx   but the ch. tany=t give  ∫_0 ^(π/2)   (dy/(1+x^2 tan^2 y)) = ∫_0 ^∞  (1/((1+x^2 t^2 ))) (dt/((1+t^2 )))  = (1/2) ∫_R     (dt/((1+t^2 )(1+x^2 t^2 ))) let introduce the complex function  f(z)=   (1/((1+z^2 )(1+x^2 z^2 )))  f(z)=   (1/(x^2 (z−i)(z+i)(z−(i/x))(z+(i/x))))(  dont forget that 0<x≤1)  the poles of f are i and −i and (i/x) and −(i/x)  so  ∫_R    f(z)dz=2iπ(  Re(f,i) +Re(f,(i/x))) but  Res(f,i)=lim_(z−>i) (z−i)f(z)=  (1/(x^2 (2i)(−1+(1/x^2 ))))  = (1/(2i(1−x^2 )))  Re(f, (i/x))=lim_(z−>(i/x))  (z−(i/x))f(z)=       (1/(x^2 (−(1/x^2 )+1)(((2i)/x))))  =  (x/(2i(x^2 −1)))  ∫_R f(z)dz= 2iπ(   (1/(2i(1−x^2 ))) − (x/(2i(1−x^2 ))))  = π((1−x)/(1−x^2 )) = (π/(1+x))  and ∫_0 ^(π/2)    (dy/(1+x^2 tan^2 y)) = (π/(2(1+x)))  ⇒ I= ∫_0 ^1  (π/(2(1+x))) dx =(π/2) [ln/1+x/]_0 ^1 = (π/2) ln2  2)by fubini therem we have also   I=∫_0 ^(π/2) ( ∫_0 ^1   (dx/(1+(xtany)^2 )))dy and the ch. xtany=t give  ∫_0 ^1     (dx/(1+(xtany)^2 ))= ∫_0 ^(tany)    (1/(1+t^2 )) (dt/(tany))  =(1/(tany)) arctan(tany)= (y/(tany)) so  I= ∫_0 ^(π/2)  (y/(tany))dy  ⇒∫_0 ^(π/2)    (t/(tant)) dt = (π/2) ln(2).
1)letputI=]0,1]×]0,π2]dxdy1+(xtany)2I=01(0π2dy1+x2tan2y)dxbutthech.tany=tgive0π2dy1+x2tan2y=01(1+x2t2)dt(1+t2)=12Rdt(1+t2)(1+x2t2)letintroducethecomplexfunctionf(z)=1(1+z2)(1+x2z2)f(z)=1x2(zi)(z+i)(zix)(z+ix)(dontforgetthat0<x1)thepolesoffareiandiandixandixsoRf(z)dz=2iπ(Re(f,i)+Re(f,ix))butRes(f,i)=limz>i(zi)f(z)=1x2(2i)(1+1x2)=12i(1x2)Re(f,ix)=limz>ix(zix)f(z)=1x2(1x2+1)(2ix)=x2i(x21)Rf(z)dz=2iπ(12i(1x2)x2i(1x2))=π1x1x2=π1+xand0π2dy1+x2tan2y=π2(1+x)I=01π2(1+x)dx=π2[ln/1+x/]01=π2ln22)byfubinitheremwehavealsoI=0π2(01dx1+(xtany)2)dyandthech.xtany=tgive01dx1+(xtany)2=0tany11+t2dttany=1tanyarctan(tany)=ytanysoI=0π2ytanydy0π2ttantdt=π2ln(2).
Answered by sma3l2996 last updated on 13/Jan/18
1:  I=∫∫_(]0,1]×]0,π/2]) ((dxdy)/((xtany)^2 ))=lim_(b→0) ∫_b ^(π/2) (lim_(a→0) ∫_a ^1 (dx/(1+(xtany)^2 )))dy  let  t=xtany⇒dt=tanydx  I=lim_(b→0) ∫_b ^(π/2) (1/(tany))×lim_(a→0) (∫_a ^(tany) (dt/(1+t^2 )))dy  =lim_(b→0) ∫_b ^(π/2) (1/(tany))×lim_(a→0) [tan^(−1) (t)]_a ^(tany) dy  =lim_(b→0) ∫_b ^(π/2) (1/(tany))(y−0)dy=lim_(b→0) ∫_0 ^(π/2) ((ydy)/(tany))  let z=e^(iy)   I=−∫_Δ ((ln(z)(z^2 −1))/(z^2 +1))×(dz/z)  let f(z)=((ln(z)(z^2 −1))/(z(z+i)(z−i)))  so  I=−2iπRes(f,i)=−2iπ(((ln(i)(−2))/(−2)))  I=π^2
1:I=]0,1]×]0,π/2]dxdy(xtany)2=limb0bπ/2(lima0a1dx1+(xtany)2)dylett=xtanydt=tanydxI=limb0bπ/21tany×lima0(atanydt1+t2)dy=limb0bπ/21tany×lima0[tan1(t)]atanydy=limb0bπ/21tany(y0)dy=limb00π/2ydytanyletz=eiyI=Δln(z)(z21)z2+1×dzzletf(z)=ln(z)(z21)z(z+i)(zi)soI=2iπRes(f,i)=2iπ(ln(i)(2)2)I=π2
Commented by abdo imad last updated on 13/Jan/18
the value of  I you have given is not true sir....perhaps you have commiteted a error  in residus application....
thevalueofIyouhavegivenisnottruesir.perhapsyouhavecommitetedaerrorinresidusapplication.

Leave a Reply

Your email address will not be published. Required fields are marked *