1-calculate-0-1-0-pi-2-dxdy-1-xtany-2-2-find-the-value-of-0-pi-2-t-tant-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27693 by abdo imad last updated on 12/Jan/18 1)calculate∫∫]0,1]×]0,π2]dxdy1+(xtany)22)findthevalueof∫0π2ttantdt. Commented by abdo imad last updated on 13/Jan/18 1)letputI=∫∫]0,1]×]0,π2]dxdy1+(xtany)2I=∫01(∫0π2dy1+x2tan2y)dxbutthech.tany=tgive∫0π2dy1+x2tan2y=∫0∞1(1+x2t2)dt(1+t2)=12∫Rdt(1+t2)(1+x2t2)letintroducethecomplexfunctionf(z)=1(1+z2)(1+x2z2)f(z)=1x2(z−i)(z+i)(z−ix)(z+ix)(dontforgetthat0<x⩽1)thepolesoffareiand−iandixand−ixso∫Rf(z)dz=2iπ(Re(f,i)+Re(f,ix))butRes(f,i)=limz−>i(z−i)f(z)=1x2(2i)(−1+1x2)=12i(1−x2)Re(f,ix)=limz−>ix(z−ix)f(z)=1x2(−1x2+1)(2ix)=x2i(x2−1)∫Rf(z)dz=2iπ(12i(1−x2)−x2i(1−x2))=π1−x1−x2=π1+xand∫0π2dy1+x2tan2y=π2(1+x)⇒I=∫01π2(1+x)dx=π2[ln/1+x/]01=π2ln22)byfubinitheremwehavealsoI=∫0π2(∫01dx1+(xtany)2)dyandthech.xtany=tgive∫01dx1+(xtany)2=∫0tany11+t2dttany=1tanyarctan(tany)=ytanysoI=∫0π2ytanydy⇒∫0π2ttantdt=π2ln(2). Answered by sma3l2996 last updated on 13/Jan/18 1:I=∫∫]0,1]×]0,π/2]dxdy(xtany)2=limb→0∫bπ/2(lima→0∫a1dx1+(xtany)2)dylett=xtany⇒dt=tanydxI=limb→0∫bπ/21tany×lima→0(∫atanydt1+t2)dy=limb→0∫bπ/21tany×lima→0[tan−1(t)]atanydy=limb→0∫bπ/21tany(y−0)dy=limb→0∫0π/2ydytanyletz=eiyI=−∫Δln(z)(z2−1)z2+1×dzzletf(z)=ln(z)(z2−1)z(z+i)(z−i)soI=−2iπRes(f,i)=−2iπ(ln(i)(−2)−2)I=π2 Commented by abdo imad last updated on 13/Jan/18 thevalueofIyouhavegivenisnottruesir….perhapsyouhavecommitetedaerrorinresidusapplication…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-by-two-ways-the-value-of-0-1-x-y-dxdxy-then-calculate-0-1-t-1-lnt-dt-Next Next post: suppose-f-x-a-bx-x-lt-1-4-x-1-b-ax-x-gt-1-and-if-lim-x-1-f-x-f-1-what-are-possible-values-of-a-and-b- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.