Menu Close

1-calculate-0-1-ln-1-ix-dx-and-0-1-ln-1-ix-dx-2-find-the-value-of-0-1-ln-1-x-2-dx-




Question Number 49953 by maxmathsup by imad last updated on 12/Dec/18
1) calculate ∫_0 ^1 ln(1+ix)dx and ∫_0 ^1 ln(1−ix)dx  2) find the value of ∫_0 ^1 ln(1+x^2 )dx .
1)calculate01ln(1+ix)dxand01ln(1ix)dx2)findthevalueof01ln(1+x2)dx.
Commented by Abdo msup. last updated on 14/Dec/18
1) we have 1+ix =(√(1+x^2 ))((1/( (√(1+x^2 )))) +i(x/( (√(1+x^2 ))))) =(√(1+x^2 ))e^(iarctan(x))   ⇒∫_0 ^1 ln(1+ix)dx =(1/2) ∫_0 ^1 ln(1+x^2 )dx +i ∫_0 ^1  arctanxdx but  ∫_0 ^1 ln(1+x^2 )dx =_(by parts)   [xln(1+x^2 )]_0 ^1  −∫_0 ^1 x ((2x)/(1+x^2 ))dx  =ln(2) −2 ∫_0 ^1  ((1+x^2 −1)/(1+x^2 ))dx=ln(2)−2 +2 ∫_0 ^1    (dx/(1+x^2 ))  =ln(2)−2 +2.(π/4) =ln(2)−2+(π/2)  also by parts  ∫_0 ^1  arctan(x)dx = [x arctanx]_0 ^1  −∫_0 ^1   (x/(1+x^2 ))dx  =(π/4) −[(1/2)ln(1+x^2 )]_0 ^1  =(π/4) −(1/2)ln(2) ⇒  ∫_0 ^1   ln(1+ix)dx =((ln(2))/2) −1+(π/4) +i((π/4) −(1/2)ln(2))
1)wehave1+ix=1+x2(11+x2+ix1+x2)=1+x2eiarctan(x)01ln(1+ix)dx=1201ln(1+x2)dx+i01arctanxdxbut01ln(1+x2)dx=byparts[xln(1+x2)]0101x2x1+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2.π4=ln(2)2+π2alsobyparts01arctan(x)dx=[xarctanx]0101x1+x2dx=π4[12ln(1+x2)]01=π412ln(2)01ln(1+ix)dx=ln(2)21+π4+i(π412ln(2))
Commented by Abdo msup. last updated on 14/Dec/18
also  1−ix =conj(1+ix)=(√(1+x^2 ))e^(−iarctan(x))  ⇒  ln(1−ix) =(1/2)ln(1+x^2 )−i arctanx ⇒  ∫_0 ^1  ln(1−ix)dx =(1/2) ∫_0 ^1 ln(1+x^2 )dx−i ∫_0 ^1  arctanx dx  =((ln(2))/2) −1+(π/4) −i((π/4) −((ln(2))/2)) and we see that  ∫_0 ^1 ln(1−ix)dx =conj(∫_0 ^1 ln(1+ix)dx).
also1ix=conj(1+ix)=1+x2eiarctan(x)ln(1ix)=12ln(1+x2)iarctanx01ln(1ix)dx=1201ln(1+x2)dxi01arctanxdx=ln(2)21+π4i(π4ln(2)2)andweseethat01ln(1ix)dx=conj(01ln(1+ix)dx).
Commented by Abdo msup. last updated on 14/Dec/18
2) by parts  ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )]_0 ^1  −∫_0 ^1  x ((2x)/(1+x^2 ))dx  =ln(2)−2 ∫_0 ^1   ((1+x^2 −1)/(1+x^2 ))dx =ln(2)−2 +2 ∫_0 ^1   (dx/(1+x^2 ))  =ln(2)−2 +2.(π/4) =ln(2)−2 +(π/2)  complex method  ∫_0 ^1 ln(1+x^2 )dx =∫_0 ^1 ln(1+ix)(1−ix))dx  =∫_0 ^1 ln(1+ix)dx +∫_0 ^1 ln(1−ix)dx  =((ln(2))/2) −1 +(π/4) +((ln(2))/2) −1+(π/4) =ln(2)−2 +(π/2) .
2)byparts01ln(1+x2)dx=[xln(1+x2)]0101x2x1+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2.π4=ln(2)2+π2complexmethod01ln(1+x2)dx=01ln(1+ix)(1ix))dx=01ln(1+ix)dx+01ln(1ix)dx=ln(2)21+π4+ln(2)21+π4=ln(2)2+π2.

Leave a Reply

Your email address will not be published. Required fields are marked *