1-calculate-0-1-ln-1-ix-dx-and-0-1-ln-1-ix-dx-2-find-the-value-of-0-1-ln-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 49953 by maxmathsup by imad last updated on 12/Dec/18 1)calculate∫01ln(1+ix)dxand∫01ln(1−ix)dx2)findthevalueof∫01ln(1+x2)dx. Commented by Abdo msup. last updated on 14/Dec/18 1)wehave1+ix=1+x2(11+x2+ix1+x2)=1+x2eiarctan(x)⇒∫01ln(1+ix)dx=12∫01ln(1+x2)dx+i∫01arctanxdxbut∫01ln(1+x2)dx=byparts[xln(1+x2)]01−∫01x2x1+x2dx=ln(2)−2∫011+x2−11+x2dx=ln(2)−2+2∫01dx1+x2=ln(2)−2+2.π4=ln(2)−2+π2alsobyparts∫01arctan(x)dx=[xarctanx]01−∫01x1+x2dx=π4−[12ln(1+x2)]01=π4−12ln(2)⇒∫01ln(1+ix)dx=ln(2)2−1+π4+i(π4−12ln(2)) Commented by Abdo msup. last updated on 14/Dec/18 also1−ix=conj(1+ix)=1+x2e−iarctan(x)⇒ln(1−ix)=12ln(1+x2)−iarctanx⇒∫01ln(1−ix)dx=12∫01ln(1+x2)dx−i∫01arctanxdx=ln(2)2−1+π4−i(π4−ln(2)2)andweseethat∫01ln(1−ix)dx=conj(∫01ln(1+ix)dx). Commented by Abdo msup. last updated on 14/Dec/18 2)byparts∫01ln(1+x2)dx=[xln(1+x2)]01−∫01x2x1+x2dx=ln(2)−2∫011+x2−11+x2dx=ln(2)−2+2∫01dx1+x2=ln(2)−2+2.π4=ln(2)−2+π2complexmethod∫01ln(1+x2)dx=∫01ln(1+ix)(1−ix))dx=∫01ln(1+ix)dx+∫01ln(1−ix)dx=ln(2)2−1+π4+ln(2)2−1+π4=ln(2)−2+π2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-simplify-A-n-1-2-i-3-n-1-2-i-3-n-2-smplify-B-n-1-2-3-n-1-2-3-n-n-integr-natural-Next Next post: find-f-0-1-arctan-x-1-2-x-2-dx-2-calculate-0-1-arctan-2x-1-4x-2-dx-and-0-1-arctan-3x-1-9x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.