Menu Close

1-calculate-0-2pi-d-x-2-2x-cos-1-2-calculate-0-2pi-cos-x-2-2xcos-1-2-d-




Question Number 125146 by mathmax by abdo last updated on 08/Dec/20
1)calculate ∫_0 ^(2π)  (dθ/(x^2 −2x cosθ +1))  2) calculate  ∫_0 ^(2π)   ((cosθ)/((x^2 −2xcosθ +1)^2 ))dθ
1)calculate02πdθx22xcosθ+12)calculate02πcosθ(x22xcosθ+1)2dθ
Answered by Dwaipayan Shikari last updated on 08/Dec/20
x^2 −2xcos𝛉+1=0  x=cos𝛉±isin𝛉=e^(±i𝛉)   ∫_0 ^(2π) (1/((x−e^(iθ) )(x−e^(−iθ) )))dx  =∫_0 ^(2π) (1/(x−e^(iθ) ))−(1/(x−e^(−iθ) ))dx=(1/(2cosθ))∫_0 ^(2π) (1/((x−e^(iθ) )))−(1/((x−e^(−iθ) )))  =(1/(2cosθ))[log(((x−e^(iθ) )/(x−e^(−iθ) )))]_0 ^(2π) =(( 1)/(2cosθ))log(((2π−e^(iθ) )/(2π−e^(−iθ) )))−((θi)/(cosθ))
x22xcosθ+1=0x=cosθ±isinθ=e±iθ02π1(xeiθ)(xeiθ)dx=02π1xeiθ1xeiθdx=12cosθ02π1(xeiθ)1(xeiθ)=12cosθ[log(xeiθxeiθ)]02π=12cosθlog(2πeiθ2πeiθ)θicosθ
Answered by mathmax by abdo last updated on 08/Dec/20
2) we have I(x)=∫_0 ^∞  (dθ/(x^2 −2xcosθ +1)) ⇒  I^′ (x)=∫_0 ^∞  (∂/∂x)((1/(x^2 −2xcosθ +1)))dθ =−∫_0 ^∞   ((2x−2cosθ)/((x^2 −2xcosθ +1)^2 ))dθ  =−2x ∫_0 ^∞    (dθ/((x^2 −2xcosθ +1)^2 )) +2 ∫_0 ^∞  ((cosθ)/((x^2 −2xcosθ+1)^2 ))dθ ⇒  ∫_0 ^∞   ((cosθ dθ)/((x^2 −2xcosθ +1)^2 ))=(1/2){ I^′ (x)+2x ∫_0 ^∞  (dθ/((x^2 −2xcosθ+1)^2 ))}  I(x) is known rest to calculate I^′ (x) and ∫_0 ^∞  (dθ/((x^2 −2xcosθ +1)^2 ))  ...be continued..
2)wehaveI(x)=0dθx22xcosθ+1I(x)=0x(1x22xcosθ+1)dθ=02x2cosθ(x22xcosθ+1)2dθ=2x0dθ(x22xcosθ+1)2+20cosθ(x22xcosθ+1)2dθ0cosθdθ(x22xcosθ+1)2=12{I(x)+2x0dθ(x22xcosθ+1)2}I(x)isknownresttocalculateI(x)and0dθ(x22xcosθ+1)2becontinued..
Answered by mathmax by abdo last updated on 08/Dec/20
1) let I(x)=∫_0 ^(2π)   (dθ/(x^2 −2xcosθ +1)) changement e^(iθ) =z give  I(x)=∫_(∣z∣=1)      (dz/(iz(x^2 −2x×((z+z^(−1) )/2)+1))) =∫_(∣z∣=1)   ((−idz)/(z(x^2 −xz−xz^(−1) +1)))  =∫_(∣z∣=1)     ((−idz)/(x^2 z−xz^2 −x+z)) =∫_(∣z∣=1)    ((−idz)/(−xz^2 +(1+x^2 )z−x))  =∫_(∣z∣=1)    ((idz)/(xz^2 −(1+x^2 )z+x)) let w(z)=(i/(xz^2 −(1+x^2 )z+x))  poles of w?  Δ=(1+x^2 )^2 −4x^2  =x^4 +2x^2 +1−4x^2  =x^4 −2x^2  +1=(x^2 −1)^2   ⇒z_1 =((1+x^2 +∣x^2 −1∣)/(2x)) and z_2 =((1+x^2 −∣x^2 −1∣)/(2x))  case1 ∣x∣>1 ⇒z_1 =((1+x^2 +x^2 −1)/(2x))=x  and z_2 =((1+x^2 −x^2 +1)/(2x))=(1/x)  ∣z_1 ∣−1=∣x∣−1>0 and ∣z_2 ∣−1 =(1/(∣x∣))−1<0 ⇒  ∫_(∣z∣=1)  w(z)dz =2iπ Res(w,(1/x))  but s(x)=(i/(x(z−x)(z−(1/x)))) ⇒  Res(w,(1/x))=(i/(x((1/x)−x)))=(i/(1−x^2 )) ⇒∫_(∣z∣=1)  w(z)dz =2iπ×(i/(1−x^2 ))  =((−2π)/(1−x^2 ))=((2π)/(x^2 −1))=I(x)  case2  ∣x∣<1 ⇒z_1 =(1/x) and z_2 =x  ∣z_1 ∣−1 =(1/(∣x∣))−1>0  (out of circle) and ∣z_2 ∣−1=∣x∣−1<0 ⇒  ∫_(∣z∣=1)   w(z)dz =2iπ Res(w,x)=2iπ×(i/(x(x−(1/x))))=((−2π)/(x^2 −1))=((2π)/(1−x^2 )) ⇒  I(x)=((2π)/(1−x^2 )) [finally  I(x)= { ((((2π)/(x^2 −1)) if ∣x∣>1)),((((2π)/(1−x^2 )) if ∣x∣<1)) :}
1)letI(x)=02πdθx22xcosθ+1changementeiθ=zgiveI(x)=z∣=1dziz(x22x×z+z12+1)=z∣=1idzz(x2xzxz1+1)=z∣=1idzx2zxz2x+z=z∣=1idzxz2+(1+x2)zx=z∣=1idzxz2(1+x2)z+xletw(z)=ixz2(1+x2)z+xpolesofw?Δ=(1+x2)24x2=x4+2x2+14x2=x42x2+1=(x21)2z1=1+x2+x212xandz2=1+x2x212xcase1x∣>1z1=1+x2+x212x=xandz2=1+x2x2+12x=1xz11=∣x1>0andz21=1x1<0z∣=1w(z)dz=2iπRes(w,1x)buts(x)=ix(zx)(z1x)Res(w,1x)=ix(1xx)=i1x2z∣=1w(z)dz=2iπ×i1x2=2π1x2=2πx21=I(x)case2x∣<1z1=1xandz2=xz11=1x1>0(outofcircle)andz21=∣x1<0z∣=1w(z)dz=2iπRes(w,x)=2iπ×ix(x1x)=2πx21=2π1x2I(x)=2π1x2[finallyI(x)={2πx21ifx∣>12π1x2ifx∣<1

Leave a Reply

Your email address will not be published. Required fields are marked *