1-calculate-0-2pi-d-x-2-2x-cos-1-2-calculate-0-2pi-cos-x-2-2xcos-1-2-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 125146 by mathmax by abdo last updated on 08/Dec/20 1)calculate∫02πdθx2−2xcosθ+12)calculate∫02πcosθ(x2−2xcosθ+1)2dθ Answered by Dwaipayan Shikari last updated on 08/Dec/20 x2−2xcosθ+1=0x=cosθ±isinθ=e±iθ∫02π1(x−eiθ)(x−e−iθ)dx=∫02π1x−eiθ−1x−e−iθdx=12cosθ∫02π1(x−eiθ)−1(x−e−iθ)=12cosθ[log(x−eiθx−e−iθ)]02π=12cosθlog(2π−eiθ2π−e−iθ)−θicosθ Answered by mathmax by abdo last updated on 08/Dec/20 2)wehaveI(x)=∫0∞dθx2−2xcosθ+1⇒I′(x)=∫0∞∂∂x(1x2−2xcosθ+1)dθ=−∫0∞2x−2cosθ(x2−2xcosθ+1)2dθ=−2x∫0∞dθ(x2−2xcosθ+1)2+2∫0∞cosθ(x2−2xcosθ+1)2dθ⇒∫0∞cosθdθ(x2−2xcosθ+1)2=12{I′(x)+2x∫0∞dθ(x2−2xcosθ+1)2}I(x)isknownresttocalculateI′(x)and∫0∞dθ(x2−2xcosθ+1)2…becontinued.. Answered by mathmax by abdo last updated on 08/Dec/20 1)letI(x)=∫02πdθx2−2xcosθ+1changementeiθ=zgiveI(x)=∫∣z∣=1dziz(x2−2x×z+z−12+1)=∫∣z∣=1−idzz(x2−xz−xz−1+1)=∫∣z∣=1−idzx2z−xz2−x+z=∫∣z∣=1−idz−xz2+(1+x2)z−x=∫∣z∣=1idzxz2−(1+x2)z+xletw(z)=ixz2−(1+x2)z+xpolesofw?Δ=(1+x2)2−4x2=x4+2x2+1−4x2=x4−2x2+1=(x2−1)2⇒z1=1+x2+∣x2−1∣2xandz2=1+x2−∣x2−1∣2xcase1∣x∣>1⇒z1=1+x2+x2−12x=xandz2=1+x2−x2+12x=1x∣z1∣−1=∣x∣−1>0and∣z2∣−1=1∣x∣−1<0⇒∫∣z∣=1w(z)dz=2iπRes(w,1x)buts(x)=ix(z−x)(z−1x)⇒Res(w,1x)=ix(1x−x)=i1−x2⇒∫∣z∣=1w(z)dz=2iπ×i1−x2=−2π1−x2=2πx2−1=I(x)case2∣x∣<1⇒z1=1xandz2=x∣z1∣−1=1∣x∣−1>0(outofcircle)and∣z2∣−1=∣x∣−1<0⇒∫∣z∣=1w(z)dz=2iπRes(w,x)=2iπ×ix(x−1x)=−2πx2−1=2π1−x2⇒I(x)=2π1−x2[finallyI(x)={2πx2−1if∣x∣>12π1−x2if∣x∣<1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-x-R-a-1-a-2-a-3-b-1-b-2-b-3-gt-0-Then-prove-that-a-1-sin-2-x-b-1-cos-2-x-a-2-sin-2-x-b-2-cos-2-x-a-3-sin-2-x-b-3-cos-2-x-a-1-a-2-a-3-sin-2Next Next post: find-the-value-of-x-e-ln-2x-5-lne-8x-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.