Menu Close

1-calculate-0-2pi-dt-cost-x-sint-wih-x-from-R-2-calculate-0-2pi-sint-cost-xsint-2-dt-3-find-the-value-of-0-2pi-dt-cos-2t-2sin-2t-




Question Number 63667 by mathmax by abdo last updated on 07/Jul/19
1) calculate ∫_0 ^(2π)    (dt/(cost +x sint))   wih x from R.  2) calculate  ∫_0 ^(2π)   ((sint)/((cost +xsint)^2 ))dt  3) find[the value of ∫_0 ^(2π)   (dt/(cos(2t)+2sin(2t)))
1)calculate02πdtcost+xsintwihxfromR.2)calculate02πsint(cost+xsint)2dt3)find[thevalueof02πdtcos(2t)+2sin(2t)
Commented by mathmax by abdo last updated on 07/Jul/19
1) changement z =e^(it)  give   ∫_0 ^(2π)   (dt/(cost +xsint)) =∫_(∣z∣=1)      (dz/(iz{((z+z^(−1) )/2)+x((z−z^(−1) )/(2i))}))  =∫_(∣z∣=1)    (dz/(((iz^2 +i)/2)+((xz^2 −x)/2))) =∫_(∣z∣=1)    ((2dz)/((x+i)z^2 −x+i))  =(2/(x+i)) ∫_(∣z∣=1)     (dz/(z^2 −((x−i)/(x+i))))      we have ((x−i)/(x+i)) =(((√(x^2 +1))e^(iarctan(−(1/x))) )/( (√(x^2  +1))e^(iarctan((1/x))) ))  =e^(−2i arctan((1/x)))     (  we suppose x≠0) ⇒(√((x−i)/(x+i)))=e^(−iarctan((1/x)))   let w(z) =(1/(z^2 −((x−i)/(x+i)))) ⇒W(z)=(1/((z−e^(−iarctan((1/x))) )(z+e^(−iarctan((1/x))) )))  residus theorem give   ∫_(∣z∣=1)   W(z)dz =2iπ{Res(W,e^(−iarctan((1/x))) )+Res(W,−e^(−iarctan((1/x))) )  Res(W,e^(−iarctan((1/x))) )=(1/(2e^(−iarctan((1/x))) )) =(1/2) e^(iarctan((1/x)))   Res(W,−e^(−iarctan((1/x))) ) =(1/(−2e^(−iarctan((1/x))) )) =−(1/2)e^(iarctan((1/x)))  ⇒  the residus are opposites ⇒∫_(∣z∣=1) W(z)dz =0 ⇒  ∀x ≠0    ∫_0 ^(2π)    (dt/(cost +isint)) =0  if x=0 we get ∫_0 ^(2π)   (dt/(cost)) =∫_0 ^π  (dt/(cost)) +∫_π ^(2π)  (dt/(cost))  ∫_π ^(2π)  (dt/(cost)) =_(t =π +u)     ∫_0 ^π   (du/(−cosu)) =−∫_0 ^π  (du/(cosu)) ⇒  ∫_0 ^(2π)  (dt/(cost)) =0
1)changementz=eitgive02πdtcost+xsint=z∣=1dziz{z+z12+xzz12i}=z∣=1dziz2+i2+xz2x2=z∣=12dz(x+i)z2x+i=2x+iz∣=1dzz2xix+iwehavexix+i=x2+1eiarctan(1x)x2+1eiarctan(1x)=e2iarctan(1x)(wesupposex0)xix+i=eiarctan(1x)letw(z)=1z2xix+iW(z)=1(zeiarctan(1x))(z+eiarctan(1x))residustheoremgivez∣=1W(z)dz=2iπ{Res(W,eiarctan(1x))+Res(W,eiarctan(1x))Res(W,eiarctan(1x))=12eiarctan(1x)=12eiarctan(1x)Res(W,eiarctan(1x))=12eiarctan(1x)=12eiarctan(1x)theresidusareoppositesz∣=1W(z)dz=0x002πdtcost+isint=0ifx=0weget02πdtcost=0πdtcost+π2πdtcostπ2πdtcost=t=π+u0πducosu=0πducosu02πdtcost=0
Commented by mathmax by abdo last updated on 07/Jul/19
2) let f(x)=∫_0 ^(2π)   (dt/(cost +xsint)) ⇒f^′ (x) =−∫_0 ^(2π) ((sint)/((cost +xsint)^2 ))dt =0  (because f(x)=0)⇒∫_0 ^(2π)  ((sint)/((cost +xsint)^2 ))dt =0
2)letf(x)=02πdtcost+xsintf(x)=02πsint(cost+xsint)2dt=0(becausef(x)=0)02πsint(cost+xsint)2dt=0
Commented by mathmax by abdo last updated on 07/Jul/19
3)∫_0 ^(2π)  (dt/(cos(2t)+2 sin(2t))) =_(2t =u)   ∫_0 ^(4π)  (du/(2(cosu +2sinu)))  =(1/2)∫_0 ^(2π)   (du/(cosu +2sinu )) +∫_(2π) ^(4π)   (du/(cosu +2sinu)) =0 because  2π is period.
3)02πdtcos(2t)+2sin(2t)=2t=u04πdu2(cosu+2sinu)=1202πducosu+2sinu+2π4πducosu+2sinu=0because2πisperiod.

Leave a Reply

Your email address will not be published. Required fields are marked *