1-calculate-0-2pi-dt-cost-x-sint-wih-x-from-R-2-calculate-0-2pi-sint-cost-xsint-2-dt-3-find-the-value-of-0-2pi-dt-cos-2t-2sin-2t- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 63667 by mathmax by abdo last updated on 07/Jul/19 1)calculate∫02πdtcost+xsintwihxfromR.2)calculate∫02πsint(cost+xsint)2dt3)find[thevalueof∫02πdtcos(2t)+2sin(2t) Commented by mathmax by abdo last updated on 07/Jul/19 1)changementz=eitgive∫02πdtcost+xsint=∫∣z∣=1dziz{z+z−12+xz−z−12i}=∫∣z∣=1dziz2+i2+xz2−x2=∫∣z∣=12dz(x+i)z2−x+i=2x+i∫∣z∣=1dzz2−x−ix+iwehavex−ix+i=x2+1eiarctan(−1x)x2+1eiarctan(1x)=e−2iarctan(1x)(wesupposex≠0)⇒x−ix+i=e−iarctan(1x)letw(z)=1z2−x−ix+i⇒W(z)=1(z−e−iarctan(1x))(z+e−iarctan(1x))residustheoremgive∫∣z∣=1W(z)dz=2iπ{Res(W,e−iarctan(1x))+Res(W,−e−iarctan(1x))Res(W,e−iarctan(1x))=12e−iarctan(1x)=12eiarctan(1x)Res(W,−e−iarctan(1x))=1−2e−iarctan(1x)=−12eiarctan(1x)⇒theresidusareopposites⇒∫∣z∣=1W(z)dz=0⇒∀x≠0∫02πdtcost+isint=0ifx=0weget∫02πdtcost=∫0πdtcost+∫π2πdtcost∫π2πdtcost=t=π+u∫0πdu−cosu=−∫0πducosu⇒∫02πdtcost=0 Commented by mathmax by abdo last updated on 07/Jul/19 2)letf(x)=∫02πdtcost+xsint⇒f′(x)=−∫02πsint(cost+xsint)2dt=0(becausef(x)=0)⇒∫02πsint(cost+xsint)2dt=0 Commented by mathmax by abdo last updated on 07/Jul/19 3)∫02πdtcos(2t)+2sin(2t)=2t=u∫04πdu2(cosu+2sinu)=12∫02πducosu+2sinu+∫2π4πducosu+2sinu=0because2πisperiod. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-2pi-dx-2sinx-cosx-Next Next post: Show-that-the-number-122-n-102-n-21-n-is-always-one-less-than-a-multiple-of-2020-For-every-positive-integer-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.