Question Number 59631 by Mr X pcx last updated on 12/May/19

Commented by Mr X pcx last updated on 12/May/19

Commented by maxmathsup by imad last updated on 15/May/19
![we have I =∫_0 ^π (dx/(acosx +bsinx)) +∫_π ^(2π) (dx/(acosx +bsinx)) =H +K H =_(tan((x/2))=t) ∫_0 ^∞ (1/(a((1−t^2 )/(1+t^2 )) +b((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^∞ ((2dt)/(a−at^2 +2bt)) =∫_0 ^∞ ((−2dt)/(at^2 −2bt −a)) roots of at^2 −2bt −a =0 Δ^′ =b^2 +a^2 >0 for a ≠0 ⇒t_1 =((b+(√(a^2 +b^2 )))/a) t_2 =((b−(√(a^2 +b^2 )))/a) ⇒H =∫_0 ^∞ ((−2)/(a(t−t_1 )(t−t_2 ))) dt =((−2)/(a(t_1 −t_2 )))∫_0 ^∞ ((1/(t−t_1 )) −(1/(t−t_2 )))dt =((−2)/((2a(√(a^2 +b^2 )))/a)) [ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞) =((−1)/( (√(a^2 +b^2 ))))(−ln∣(t_1 /t_2 )∣) =(1/( (√(a^2 +b^2 )))) ln∣((b+(√(a^2 +b^2 )))/(b−(√(a^2 +b^2 ))))∣ ⇒H =(1/( (√(a^2 +b^2 ))))ln((((√(a^2 +b^2 )) +b)/( (√(a^2 +b^2 )) −b))) K =_(x =t +π) ∫_0 ^π (dt/(−a cost −bsint)) =−(1/( (√(a^2 +b^2 )))) ln((((√(a^2 +b^2 )) +b)/( (√(a^2 +b^2 ))−b))) ⇒ I =0](https://www.tinkutara.com/question/Q59878.png)
Commented by maxmathsup by imad last updated on 15/May/19

Answered by tanmay last updated on 12/May/19

Answered by tanmay last updated on 13/May/19
![2)∫((cosx)/((acosx+bsinx)^2 )) cosx=A(acosx+bsinx)+B×(d/dx)(acosx+bsinx) cosx=A(acosx+bsinx)+B×(−asinx+bcosx) cosx=(Aa+bB)cosx+(Ab−Ba)sinx Ab−Ba=0 (A/a)=(B/b)=k →A=ak and B=bk Aa+Bb=1 a^2 k+b^2 k=1 k=(1/(a^2 +b^2 )) so A=(a/(a^2 +b^2 )) and B=(b/(a^2 +b^2 )) now ∫((cosxdx)/((acosx+bsinx)^2 )) ∫[((A(acosx+bsinx)+B×(d/dx)(((acosx+bsinx))/))/((acosx+bsinx)^2 ))]dx ∫(A/((acosx+bsinx)))dx+B∫((d(acosx+bsinx))/((acosx+bsinx)^2 )) =(a/(a^2 +b^2 ))×(1/( (√(a^2 +b^2 ))))lntan(((x+tan^(−1) ((a/b)))/2))+(b/(a^2 +b^2 ))×((−1)/((acosx+bsinx)))+c now pls put the upper and lower limit for ∫((sinxdx)/((acosx+bsinx)^2 ))→same method...](https://www.tinkutara.com/question/Q59654.png)