Question Number 59631 by Mr X pcx last updated on 12/May/19
$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{{acosx}\:+{bsinx}} \\ $$$${with}\:{a}\:,\:{b}\:{reals} \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cosx}\:{dx}}{\left({acosx}\:+{bsinx}\right)^{\mathrm{2}} }\:\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sinx}\:{dx}}{\left({acosx}\:+{bsinx}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}{cosx}\:+\sqrt{\mathrm{3}}{sinx}} \\ $$
Commented by Mr X pcx last updated on 12/May/19
$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cosx}\:{dx}}{\left(\mathrm{3}{cosx}\:+\sqrt{\mathrm{3}}{sinx}\right)^{\mathrm{2}} } \\ $$
Commented by maxmathsup by imad last updated on 15/May/19
$${we}\:{have}\:{I}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:+\int_{\pi} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:={H}\:+{K} \\ $$$${H}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{{a}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+{b}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dt}}{{a}−{at}^{\mathrm{2}} \:+\mathrm{2}{bt}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{−\mathrm{2}{dt}}{{at}^{\mathrm{2}} \:−\mathrm{2}{bt}\:−{a}}\:\:\:{roots}\:{of}\:\:{at}^{\mathrm{2}} −\mathrm{2}{bt}\:−{a}\:=\mathrm{0} \\ $$$$\Delta^{'} \:={b}^{\mathrm{2}} \:+{a}^{\mathrm{2}} >\mathrm{0}\:\:\:{for}\:{a}\:\neq\mathrm{0}\:\:\Rightarrow{t}_{\mathrm{1}} =\frac{{b}+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}} \\ $$$${t}_{\mathrm{2}} =\frac{{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}\:\Rightarrow{H}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{−\mathrm{2}}{{a}\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)}\:{dt}\:=\frac{−\mathrm{2}}{{a}\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)}\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right){dt} \\ $$$$=\frac{−\mathrm{2}}{\frac{\mathrm{2}{a}\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}}\:\left[{ln}\mid\frac{{t}−{t}_{\mathrm{1}} }{{t}−{t}_{\mathrm{2}} }\mid\right]_{\mathrm{0}} ^{+\infty} \:=\frac{−\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\left(−{ln}\mid\frac{{t}_{\mathrm{1}} }{{t}_{\mathrm{2}} }\mid\right)\:=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\:{ln}\mid\frac{{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\mid \\ $$$$\Rightarrow{H}\:=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\left(\frac{\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:+{b}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:−{b}}\right) \\ $$$${K}\:=_{{x}\:={t}\:+\pi} \:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{−{a}\:{cost}\:−{bsint}}\:=−\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\:{ln}\left(\frac{\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:+{b}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }−{b}}\right)\:\Rightarrow \\ $$$${I}\:=\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 15/May/19
$$\left.\mathrm{2}\right)\:{let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:\Rightarrow{f}^{'} \left({a}\right)\:=−\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cosx}}{\left({acosx}\:+{bsinx}\right)^{\mathrm{2}} }{dx} \\ $$$${but}\:{f}\left({a}\right)=\mathrm{0}\:\Rightarrow{f}^{'} \left({a}\right)=\mathrm{0}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cosx}}{\left({acosx}\:+{bsinx}\right)^{\mathrm{2}} }{dx}\:=\mathrm{0}\:{also}\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sinx}}{\left({acosx}\:+{bsinx}\right)^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}{cosx}\:+\sqrt{\mathrm{3}}{sinx}}\:=\mathrm{0}\:. \\ $$
Answered by tanmay last updated on 12/May/19
$$\int\frac{{dx}}{{acosx}+{bsinx}} \\ $$$$\int\frac{{dx}}{{rsin}\alpha{cosx}+{rcos}\alpha{sinx}} \\ $$$$\frac{\mathrm{1}}{{r}}\int\frac{{dx}}{{sin}\left(\alpha+{x}\right)} \\ $$$$\frac{\mathrm{1}}{{r}}\int{cosec}\left({x}+\alpha\right){dx} \\ $$$$\frac{\mathrm{1}}{{r}}×{lntan}\left(\frac{{x}+\alpha}{\mathrm{2}}\right)+{c} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:}{lntan}\left(\frac{{x}+{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\right)}{\mathrm{2}}\right)+{c} \\ $$$${now}\:{proceed} \\ $$
Answered by tanmay last updated on 13/May/19
$$\left.\mathrm{2}\right)\int\frac{{cosx}}{\left({acosx}+{bsinx}\right)^{\mathrm{2}} } \\ $$$${cosx}={A}\left({acosx}+{bsinx}\right)+{B}×\frac{{d}}{{dx}}\left({acosx}+{bsinx}\right) \\ $$$${cosx}={A}\left({acosx}+{bsinx}\right)+{B}×\left(−{asinx}+{bcosx}\right) \\ $$$${cosx}=\left({Aa}+{bB}\right){cosx}+\left({Ab}−{Ba}\right){sinx} \\ $$$${Ab}−{Ba}=\mathrm{0} \\ $$$$\frac{{A}}{{a}}=\frac{{B}}{{b}}={k}\:\rightarrow{A}={ak}\:\:\:{and}\:{B}={bk} \\ $$$${Aa}+{Bb}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} {k}+{b}^{\mathrm{2}} {k}=\mathrm{1} \\ $$$${k}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\:{so}\:{A}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{and}\:{B}=\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${now} \\ $$$$\int\frac{{cosxdx}}{\left({acosx}+{bsinx}\right)^{\mathrm{2}} } \\ $$$$\int\left[\frac{{A}\left({acosx}+{bsinx}\right)+{B}×\frac{{d}}{{dx}}\frac{\left({acosx}+{bsinx}\right)}{}}{\left({acosx}+{bsinx}\right)^{\mathrm{2}} }\right]{dx} \\ $$$$\int\frac{{A}}{\left({acosx}+{bsinx}\right)}{dx}+{B}\int\frac{{d}\left({acosx}+{bsinx}\right)}{\left({acosx}+{bsinx}\right)^{\mathrm{2}} } \\ $$$$=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }×\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{lntan}\left(\frac{{x}+{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\right)}{\mathrm{2}}\right)+\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }×\frac{−\mathrm{1}}{\left({acosx}+{bsinx}\right)}+{c} \\ $$$${now}\:{pls}\:{put}\:{the}\:{upper}\:{and}\:{lower}\:{limit} \\ $$$${for}\:\int\frac{{sinxdx}}{\left({acosx}+{bsinx}\right)^{\mathrm{2}} }\rightarrow{same}\:{method}… \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$