Menu Close

1-calculate-0-cos-x-3-dx-2-find-the-value-of-0-cos-x-n-dx-with-n-2-




Question Number 81427 by abdomathmax last updated on 13/Feb/20
1) calculate ∫_0 ^∞  cos(x^3 )dx  2)find the value  of  ∫_0 ^∞  cos(x^n )dx with n≥2
1)calculate0cos(x3)dx2)findthevalueof0cos(xn)dxwithn2
Commented by mind is power last updated on 13/Feb/20
2)  x^n =y⇒dx=(dy/n)y^((1/n)−1)   ⇒(1/n)∫_0 ^(+∞) cos(y)y^((1/n)−1) dy  =(1/n)Re{∫_0 ^(+∞) e^(iy) y^((1/n)−1) dy  =(1/n)Re{∫_0 ^(i∞) e^(−z) (iz)^((1/n)−1) .idz}  =(1/n)Re{i^(1/n) ∫_0 ^(i∞) e^(−z) z^((1/n)−1) }  =(1/n).cos((π/(2n))).Γ((1/n))
2)xn=ydx=dyny1n11n0+cos(y)y1n1dy=1nRe{0+eiyy1n1dy=1nRe{0iez(iz)1n1.idz}=1nRe{i1n0iezz1n1}=1n.cos(π2n).Γ(1n)
Commented by abdomathmax last updated on 13/Feb/20
thank you sir.
thankyousir.
Commented by abdomathmax last updated on 13/Feb/20
1)∫_0 ^∞  cos(x^3 )dx =Re(∫_0 ^∞  e^(ix^3 ) dx)  changemrnt ix^3 =−tt give x^3 =−(t/i) ⇒x =(it)^(1/3)   = e^((iπ)/6)  t^(1/3)  ⇒  ∫_0 ^∞   e^(ix^3 ) dx =∫_0 ^∞   e^(−t)   e^((iπ)/6)  ×(1/3)t^((1/3)−1)  dx  =(1/3)e^((iπ)/6)  ∫_0 ^∞  t^((1/3)−1)  e^(−t)  dt =(1/3)e^((iπ)/6)  Γ((1/3))  ⇒∫_0 ^∞  cos(x^3 )dx =(1/3)cos((π/6))Γ((1/3))  =(1/3)((√3)/2)Γ((1/3))=(1/(2(√3)))×Γ((1/3))
1)0cos(x3)dx=Re(0eix3dx)changemrntix3=ttgivex3=tix=(it)13=eiπ6t130eix3dx=0eteiπ6×13t131dx=13eiπ60t131etdt=13eiπ6Γ(13)0cos(x3)dx=13cos(π6)Γ(13)=1332Γ(13)=123×Γ(13)
Commented by abdomathmax last updated on 13/Feb/20
2) ∫_0 ^∞  cos(x^n )dx =Re(∫_0 ^∞  e^(−ix^n ) dx) changement  ix^n =t ⇒x^n =(t/i) ⇒x =((t/i))^(1/n)  =(t^(1/n) /e^((iπ)/(2n)) ) =e^(−((iπ)/(2n)))  t^(1/n)  ⇒  ∫_0 ^∞  e^(−ix^n ) dx =∫_0 ^∞  e^(−t)  e^(−((iπ)/(2n)))  ×(1/n)t^((1/n)−1)  dt  =(1/n) e^(−((iπ)/(2n)))  ∫_0 ^∞   t^((1/n)−1)  e^(−t)  dt  =(1/n)e^(−((iπ)/(2n)))  Γ((1/n)) ⇒∫_0 ^∞  cos(x^n )dx=(1/n)cos((π/(2n)))Γ((1/n)).
2)0cos(xn)dx=Re(0eixndx)changementixn=txn=tix=(ti)1n=t1neiπ2n=eiπ2nt1n0eixndx=0eteiπ2n×1nt1n1dt=1neiπ2n0t1n1etdt=1neiπ2nΓ(1n)0cos(xn)dx=1ncos(π2n)Γ(1n).
Answered by mind is power last updated on 13/Feb/20
1)  u=x^3 ⇒∫_0 ^(+∞) (1/3)((cos(u))/u^(2/3) )du  =∫_0 ^(+∞) ((cos(u))/u^(2/3) )du  =Re∫_0 ^(+∞) e^(iu) u^(−(2/3)) du  −y=iu⇒  du=idy  Re{i^(1/3) ∫_0 ^(i∞) e^(−y) y^(−(2/3)) dy}  Re{e^((iπ)/6) ∫_0 ^(i∞) e^(−y)   y^(−(2/3)) dy}  ∫_r ^R e^(−y) y^(−(2/3)) dy+∫_(Re^(iθ) ) e^(−y) y^(−(2/3)) dy+∫_(iR) ^(ir) e^(−y) y^(−(2/3)) dy+∫_C_r  e^(−y) y^(−(2/3)) dy  C_r   =re^(it) ,t∈[((π�)/2)  ,0]  r→0  ∫_C_R  e^(−y) y^(−(2/3)) dy=0  R→∞  ∫c_r     e^(−y) y^(−((2.)/3)) dy→0  ⇒∫_(iR) ^(ir) e^(−y) y^(−(2/3)) dy=−∫_r ^R e^(−y) y^(−(2/3)) dy  ⇔∫_0 ^(i∞) e^(−y) y^(−(2/3)) dy=∫_0 ^(+∞) e^(−y) y^(−(2/3)) dy=Γ((1/3))  ⇒∫_0 ^(+∞) cos(x^3 )dx=(1/3)Γ((1/3))cos((π/6))=((√3)/6).Γ((1/3))
1)u=x30+13cos(u)u23du=0+cos(u)u23du=Re0+eiuu23duy=iudu=idyRe{i130ieyy23dy}Re{eiπ60ieyy23dy}rReyy23dy+Reiθeyy23dy+iRireyy23dy+Creyy23dyCr=reit,t[π2,0]r0CReyy23dy=0Rcreyy2.3dy0iRireyy23dy=rReyy23dy0ieyy23dy=0+eyy23dy=Γ(13)0+cos(x3)dx=13Γ(13)cos(π6)=36.Γ(13)

Leave a Reply

Your email address will not be published. Required fields are marked *