Question Number 81427 by abdomathmax last updated on 13/Feb/20

Commented by mind is power last updated on 13/Feb/20

Commented by abdomathmax last updated on 13/Feb/20

Commented by abdomathmax last updated on 13/Feb/20

Commented by abdomathmax last updated on 13/Feb/20

Answered by mind is power last updated on 13/Feb/20
![1) u=x^3 ⇒∫_0 ^(+∞) (1/3)((cos(u))/u^(2/3) )du =∫_0 ^(+∞) ((cos(u))/u^(2/3) )du =Re∫_0 ^(+∞) e^(iu) u^(−(2/3)) du −y=iu⇒ du=idy Re{i^(1/3) ∫_0 ^(i∞) e^(−y) y^(−(2/3)) dy} Re{e^((iπ)/6) ∫_0 ^(i∞) e^(−y) y^(−(2/3)) dy} ∫_r ^R e^(−y) y^(−(2/3)) dy+∫_(Re^(iθ) ) e^(−y) y^(−(2/3)) dy+∫_(iR) ^(ir) e^(−y) y^(−(2/3)) dy+∫_C_r e^(−y) y^(−(2/3)) dy C_r =re^(it) ,t∈[((π�)/2) ,0] r→0 ∫_C_R e^(−y) y^(−(2/3)) dy=0 R→∞ ∫c_r e^(−y) y^(−((2.)/3)) dy→0 ⇒∫_(iR) ^(ir) e^(−y) y^(−(2/3)) dy=−∫_r ^R e^(−y) y^(−(2/3)) dy ⇔∫_0 ^(i∞) e^(−y) y^(−(2/3)) dy=∫_0 ^(+∞) e^(−y) y^(−(2/3)) dy=Γ((1/3)) ⇒∫_0 ^(+∞) cos(x^3 )dx=(1/3)Γ((1/3))cos((π/6))=((√3)/6).Γ((1/3))](https://www.tinkutara.com/question/Q81477.png)