Menu Close

1-calculate-0-dx-1-e-nx-with-n-integr-natural-and-n-1-2-conclude-the-value-of-k-1-1-k-1-k-




Question Number 65383 by mathmax by abdo last updated on 29/Jul/19
1) calculate ∫_0 ^∞      (dx/(1+e^(nx) ))   with n integr natural  and n≥1  2) conclude the value of Σ_(k=1) ^∞   (((−1)^(k−1) )/k)
1)calculate0dx1+enxwithnintegrnaturalandn12)concludethevalueofk=1(1)k1k
Commented by mathmax by abdo last updated on 30/Jul/19
1) let A_n =∫_0 ^∞   (dx/(1+e^(nx) ))  changement  e^(nx)  =t vive nx =lnt ⇒  A_n =∫_1 ^(+∞)   (dt/(nt(1+t))) =(1/n)∫_1 ^(+∞) {(1/t)−(1/(t+1))}dt =(1/n)[ln∣(t/(t+1))∣]_1 ^(+∞)   =(1/n){−ln((1/2))} =((ln(2))/n)  2) we have A_n =∫_0 ^∞   (dx/(1+e^(nx) )) =∫_0 ^∞   (e^(−nx) /(1+e^(−nx) ))dx  =∫_0 ^∞  e^(−nx) {Σ_(k=0) ^∞  (−1)^k  e^(−knx) } =Σ_(k=0) ^∞  (−1)^k  ∫_0 ^∞  e^(−(n+kn)x) dx  =Σ_(k=0) ^∞  (−1)^k [−(1/(n(k+1)))e^(−(n+kn)x) ]_0 ^(+∞)  =(1/n)Σ_(k=0) ^∞   (((−1)^k )/(k+1))  =(1/n) Σ_(k=1) ^∞  (((−1)^(k−1) )/k)   but A_n =((ln(2))/n) ⇒Σ_(k=1) ^∞  (((−1)^(k−1) )/k) =ln(2).
1)letAn=0dx1+enxchangementenx=tvivenx=lntAn=1+dtnt(1+t)=1n1+{1t1t+1}dt=1n[lntt+1]1+=1n{ln(12)}=ln(2)n2)wehaveAn=0dx1+enx=0enx1+enxdx=0enx{k=0(1)keknx}=k=0(1)k0e(n+kn)xdx=k=0(1)k[1n(k+1)e(n+kn)x]0+=1nk=0(1)kk+1=1nk=1(1)k1kbutAn=ln(2)nk=1(1)k1k=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *