Menu Close

1-calculate-0-e-at-dt-with-a-gt-0-2-by-using-fubinni-theorem-find-the-value-of-0-e-t-e-xt-t-dt-with-x-gt-0-




Question Number 53270 by Abdo msup. last updated on 19/Jan/19
1)calculate ∫_0 ^∞  e^(−at) dt with a>0  2)by using fubinni theorem find the value of  ∫_0 ^∞   ((e^(−t)  −e^(−xt) )/t)dt   with x>0 .
1)calculate0eatdtwitha>02)byusingfubinnitheoremfindthevalueof0etexttdtwithx>0.
Commented by maxmathsup by imad last updated on 20/Jan/19
1) ∫_0 ^∞  e^(−at) dt =[−(1/a) e^(−at) ]_0 ^(+∞)  =(1/a)  2) ⇒∫_1 ^x  (da/a) =ln(x)      we take x>0 but  ∫_1 ^x  (da/a) =∫_1 ^x (∫_0 ^∞  e^(−at) dt)da =∫_0 ^∞  (∫_1 ^x  e^(−at) da)dt   ( fubini theorem)  =∫_0 ^∞  ( [−(1/t)e^(−at) ]_(a=1) ^(a=x) )dt =∫_0 ^∞  ((e^(−t) −e^(−xt) )/t) dt ⇒  ∫_0 ^∞   ((e^(−t)  −e^(−xt) )/t) dt =ln(x)   with x>0
1)0eatdt=[1aeat]0+=1a2)1xdaa=ln(x)wetakex>0but1xdaa=1x(0eatdt)da=0(1xeatda)dt(fubinitheorem)=0([1teat]a=1a=x)dt=0etexttdt0etexttdt=ln(x)withx>0
Answered by kaivan.ahmadi last updated on 19/Jan/19
1) u=−at⇒du=−adt  ((−1)/a)∫e^u du=((−1)/a)e^u =((−1)/a)e^(−at) ∣_0 ^∞ =((−1)/a)(e^(−∞) −e^0 )=  ((−1)/a)(0−1)=(1/a)
1)u=atdu=adt1aeudu=1aeu=1aeat0=1a(ee0)=1a(01)=1a

Leave a Reply

Your email address will not be published. Required fields are marked *