1-calculate-0-e-xt-2-dt-with-x-gt-0-2-find-the-value-of-0-e-t-2-e-2t-2-t-2-dt-by-using-fubinni-theorem- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53271 by Abdo msup. last updated on 19/Jan/19 1)calculate∫0∞e−xt2dtwithx>02)findthevalueof∫0∞e−t2−e−2t2t2dtbyusingfubinnitheorem. Commented by maxmathsup by imad last updated on 22/Jan/19 1)wehave∫0∞e−xt2dt=tx=u∫0∞e−u2dux=1x∫0∞e−u2du=1xπ2=π2x2)wehave∫12π2xdx=π[x]12=π(2−1)but∫12π2xdx=∫12(∫0∞e−xt2dt)dx=∫0∞(∫12e−xt2dx)dt(byfubini)=∫0∞([−1t2e−xt2]x=1x=2)dt=∫0∞e−t2−e−2t2t2dt⇒∫0∞e−t2−e−2t2t2dt=π(2−1) Commented by maxmathsup by imad last updated on 22/Jan/19 anthermethodleta>0andb>0andf(a,b)=∫0∞e−ax2−e−bx2x2dx⇒∂f∂a(a,b)=−∫0∞e−ax2dx=−∫0∞e−(ax)2dx=ax=t−∫0∞e−t2dta=−1aπ2=−π2a⇒f(a,b)=−π∫da2a=−πa+cc=f(0,b)=∫0∞1−e−bx2x2dx=φ(b)⇒φ′(b)=∫0∞e−bx2dx=π2b⇒φ(b)=πb+c0butφ(0)=c0⇒φ(b)=πb⇒f(a,b)=−πa+πb=π(b−a)finally∫0∞e−t2−e−2t2t2dt=f(1,2)=π(2−1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-0-e-at-dt-with-a-gt-0-2-by-using-fubinni-theorem-find-the-value-of-0-e-t-e-xt-t-dt-with-x-gt-0-Next Next post: xdx-a-bx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.