Menu Close

1-calculate-0-e-xt-2-dt-with-x-gt-0-2-find-the-value-of-0-e-t-2-e-2t-2-t-2-dt-by-using-fubinni-theorem-




Question Number 53271 by Abdo msup. last updated on 19/Jan/19
1)calculate∫_0 ^∞    e^(−xt^2 ) dt  with x>0  2) find the value of ∫_0 ^∞   ((e^(−t^2 )  −e^(−2t^2 ) )/t^2 ) dt  by using  fubinni theorem .
1)calculate0ext2dtwithx>02)findthevalueof0et2e2t2t2dtbyusingfubinnitheorem.
Commented by maxmathsup by imad last updated on 22/Jan/19
1) we have ∫_0 ^∞  e^(−xt^2 ) dt =_(t(√x)=u)   ∫_0 ^∞   e^(−u^2 ) (du/( (√x))) =(1/( (√x))) ∫_0 ^∞  e^(−u^2 ) du  =(1/( (√x))) ((√π)/2) =((√π)/(2(√x)))  2) we have ∫_1 ^2   ((√π)/(2(√x))) dx =(√π)[(√x)]_1 ^2 =(√π)((√2)−1)  but  ∫_1 ^2  ((√π)/(2(√x))) dx =∫_1 ^2 (∫_0 ^∞  e^(−xt^2 ) dt)dx =∫_0 ^∞  ( ∫_1 ^2  e^(−xt^2 ) dx)dt (by fubini)  =∫_0 ^∞  (  [−(1/t^2 ) e^(−xt^2 ) ]_(x=1) ^(x=2) )dt =∫_0 ^∞  ((e^(−t^2 )  −e^(−2t^2 ) )/t^2 ) dt ⇒  ∫_0 ^∞   ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 ) dt =(√π)((√2)−1)
1)wehave0ext2dt=tx=u0eu2dux=1x0eu2du=1xπ2=π2x2)wehave12π2xdx=π[x]12=π(21)but12π2xdx=12(0ext2dt)dx=0(12ext2dx)dt(byfubini)=0([1t2ext2]x=1x=2)dt=0et2e2t2t2dt0et2e2t2t2dt=π(21)
Commented by maxmathsup by imad last updated on 22/Jan/19
anther method leta>0 and b>0and f(a,b) =∫_0 ^∞   ((e^(−ax^2 ) −e^(−bx^2 ) )/x^2 ) dx ⇒(∂f/∂a)(a,b)=−∫_0 ^∞  e^(−ax^2 ) dx  =−∫_0 ^∞   e^(−((√a)x)^2 ) dx =_((√a)x =t)    −∫_0 ^∞   e^(−t^2 ) (dt/( (√a)))  =−(1/( (√a))) ((√π)/2) =−((√π)/(2(√a))) ⇒f(a,b)= −(√π)∫  (da/(2(√a))) =−(√π)(√a) +c  c=f(0,b) =∫_0 ^∞   ((1−e^(−bx^2 ) )/x^2 ) dx =ϕ(b) ⇒ϕ^′ (b)=∫_0 ^∞  e^(−bx^2 ) dx =((√π)/(2(√b))) ⇒  ϕ(b) =(√π)(√(b )) +c_0   but ϕ(0) =c_0  ⇒ϕ(b)=(√π)(√b) ⇒f(a,b)=−(√π)(√a)+(√π)(√b)  =(√π)((√(b ))−(√a))  finally ∫_0 ^∞   ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 )dt =f(1,2) =(√π)((√2)−1).
anthermethodleta>0andb>0andf(a,b)=0eax2ebx2x2dxfa(a,b)=0eax2dx=0e(ax)2dx=ax=t0et2dta=1aπ2=π2af(a,b)=πda2a=πa+cc=f(0,b)=01ebx2x2dx=φ(b)φ(b)=0ebx2dx=π2bφ(b)=πb+c0butφ(0)=c0φ(b)=πbf(a,b)=πa+πb=π(ba)finally0et2e2t2t2dt=f(1,2)=π(21).

Leave a Reply

Your email address will not be published. Required fields are marked *