Menu Close

1-calculate-A-n-0-e-n-x-sin-x-dx-with-n-integr-and-n-1-2-find-nature-of-n-1-A-n-




Question Number 49636 by maxmathsup by imad last updated on 08/Dec/18
1) calculate A_n =∫_0 ^∞   e^(−n[x]) sin(x)dx with n integr and n≥1  2) find nature of Σ_(n=1) ^∞  A_n
1)calculateAn=0en[x]sin(x)dxwithnintegrandn12)findnatureofn=1An
Commented by Abdo msup. last updated on 10/Dec/18
1) A_n =Σ_(p=0) ^∞   ∫_p ^(p+1)  e^(−np)  sin(x)dx=Σ_(p=0) ^∞  e^(−np)  A_p   A_p =∫_p ^(p+1)  sinx dx =[−cosx]_p ^(p+1) =cosp −cos(p+1) ⇒  A_n =Σ_(p=0) ^∞  e^(−np) cosp −Σ_(p=0) ^∞  e^(−np)  cos(p+1)  =Σ_(p=0) ^∞  e^(−np) cosp −Σ_(p=1) ^∞  e^(−n(p−1))  cosp  =1  +(1−e^n )Σ_(p=1) ^∞  e^(−np) cosp but  Σ_(p=1) ^∞  e^(−np) cosp =Re(Σ_(p=1) ^∞  e^(−np+ip) )  Σ_(p=1) ^∞  e^((−n+i)p)  =Σ_(p=0) ^∞  e^((−n+i)p)  −1  = (1/(1−e^(−n+i) )) −1 =(1/(1−e^(−n) (cos1 +isin1))) −1  =((1−e^(−n)  cos(1)+isin(1))/((1−e^(−n) cos(1))^2  +e^(−2n) sin^2 (1))) −1 ⇒  Re(...) =((1−e^(−n) cos(1))/(1−2e^(−n) cos(1) +e^(−2n) )) −1 ⇒  A_n =1+(1−e^(−n) )(((1−e^(−n) cos(1))/(1−2e^(−n) cos(1)+e^(−2n) )) −1) .
1)An=p=0pp+1enpsin(x)dx=p=0enpApAp=pp+1sinxdx=[cosx]pp+1=cospcos(p+1)An=p=0enpcospp=0enpcos(p+1)=p=0enpcospp=1en(p1)cosp=1+(1en)p=1enpcospbutp=1enpcosp=Re(p=1enp+ip)p=1e(n+i)p=p=0e(n+i)p1=11en+i1=11en(cos1+isin1)1=1encos(1)+isin(1)(1encos(1))2+e2nsin2(1)1Re()=1encos(1)12encos(1)+e2n1An=1+(1en)(1encos(1)12encos(1)+e2n1).
Commented by Abdo msup. last updated on 10/Dec/18
2) we hsve lim_(n→+∞)  A_n =1  ⇒ Σ A_n  diverges.
2)wehsvelimn+An=1ΣAndiverges.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Dec/18
P_n =∫_0 ^∞ e^(−n[x]) cosxdx  Q_n =∫_0 ^∞ e^(−n[x]) sinx  A_n =Q_n   P_n +iQ_n =∫_0 ^∞ e^(−n[x]) e^(ix) dx  =∫_0 ^∞ e^(−n[x]+ix) dx  =∫_0 ^1 e^(−n×0+ix) dx+∫_1 ^2 e^(−n×1+ix) dx+...+∫_r ^(r+1) e^(−n×r+ix) dx+..upto ∞  =Σ_(r=0) ^∞ ∫_r ^(r+1) e^(−nr+ix) dx  =Σ_(r=0) ^∞ e^(−nr) ∫_r ^(r+1) e^(ix) dx  =Σ_(r=0) ^∞ e^(−nr) ×∣(e^(ix) /i)∣_r ^(r+1)   =Σ_(r=0) ^∞ e^(−nr) ×(−i)(e^(i(r+1)) −e^(ir) )  =Σ_(r=0) ^∞ e^(−nr) ×i×(e^(ir) −e^(i(r+1)) )  =Σ_(r=0) ^∞ e^(−nr) ×i×[{cosr+isinr}−{cos(r+1)+isin(r+1)}]  =Σ_(r=0) ^∞ e^(−nr) ×i×[2sin(r+(1/2))sin((1/2))+i{2cos(r+(1/2))sin((1/2))]  =Σ_(r=0) ^∞ e^(−nr) ×2sin((1/2))[−cos(r+(1/2))+isin(r+(1/2))  =(−2)sin((1/2))Σ_(r=0) ^∞ e^(−nr) ×[cos(r+(1/2))−isin(r+(1/2))]  Q_n =A_n   =2sin((1/2))Σ_(r=0) ^∞ e^(−nr) sin(r+(1/2))
Pn=0en[x]cosxdxQn=0en[x]sinxAn=QnPn+iQn=0en[x]eixdx=0en[x]+ixdx=01en×0+ixdx+12en×1+ixdx++rr+1en×r+ixdx+..upto=r=0rr+1enr+ixdx=r=0enrrr+1eixdx=r=0enr×eixirr+1=r=0enr×(i)(ei(r+1)eir)=r=0enr×i×(eirei(r+1))=r=0enr×i×[{cosr+isinr}{cos(r+1)+isin(r+1)}]=r=0enr×i×[2sin(r+12)sin(12)+i{2cos(r+12)sin(12)]=r=0enr×2sin(12)[cos(r+12)+isin(r+12)=(2)sin(12)r=0enr×[cos(r+12)isin(r+12)]Qn=An=2sin(12)r=0enrsin(r+12)

Leave a Reply

Your email address will not be published. Required fields are marked *