Menu Close

1-calculate-A-n-0-n-2-dxdy-x-2-y-2-4-2-find-lim-n-A-n-




Question Number 65399 by mathmax by abdo last updated on 29/Jul/19
1) calculate A_n = ∫∫_([0,n[^2 )    ((dxdy)/( (√(x^2 +y^2 +4))))  2)find lim_(n→+∞)  A_n
1)calculateAn=[0,n[2dxdyx2+y2+42)findlimn+An
Commented by mathmax by abdo last updated on 31/Jul/19
let consider the diffeomorphisme (r,θ)→(x,y) /  x =r cosθ  and y =rsinθ  we have 0≤x<n and 0≤y<n ⇒  0≤x^2  +y^2 <2n^2  ⇒0≤r^2 <2n^2  ⇒0≤r<n(√2)  A_n =∫∫_(0≤r<n(√2) and 0≤θ≤(π/2))    ((rdr dθ)/( (√(r^2  +4))))  =∫_0 ^(n(√2))   ((rdr)/( (√(r^2  +4)))) ∫_0 ^(π/2)  dθ =(π/2)[(√(r^2  +4))]_0 ^(n(√2))   =(π/2){(√(2n^2 +4))−2}  2)lim_(n→+∞)  A_n =+∞
letconsiderthediffeomorphisme(r,θ)(x,y)/x=rcosθandy=rsinθwehave0x<nand0y<n0x2+y2<2n20r2<2n20r<n2An=0r<n2and0θπ2rdrdθr2+4=0n2rdrr2+40π2dθ=π2[r2+4]0n2=π2{2n2+42}2)limn+An=+

Leave a Reply

Your email address will not be published. Required fields are marked *