Question Number 93907 by abdomathmax last updated on 16/May/20

Commented by mathmax by abdo last updated on 17/May/20
![1) A_(n+2) =∫_0 ^(π/2) cos^(n+2) x dx =∫_0 ^(π/2) (1−sin^2 x)cos^n x dx =A_n −∫_0 ^(π/2) sin^2 x cos^n x dx but by parts u =sinx and v^′ =sinx cos^n x ∫_0 ^(π/2) sin^2 x cos^n xdx =[−(1/(n+1))cos^(n+1) x sinx]_0 ^(π/2) +∫_0 ^(π/2) (1/(n+1))cos^(n+2) xdx ⇒ A_(n+2) =A_n −(1/(n+1)) A_(n+2 ) ⇒(1+(1/(n+1)))A_(n+2) =A_n ⇒ A_(n+2) =((n+1)/(n+2)) A_n ⇒ A_n =((n−1)/n) A_(n−2) A_(2k) =((2k−1)/(2k)) A_(2k−2) ⇒Π_(k=1) ^n (A_(2k) /A_(2k−2) ) =Π_(k=1) ^n ((2k−1)/(2k)) ⇒ (A_2 /A_0 )×(A_4 /A_2 )×....(A_(2n) /A_(2n−2) ) =((1.3.5.....(2n−1))/(2^n n!)) =((1.2.3.4...(2n−1)(2n))/(2^n n! 2^n n!)) =(((2n)!)/(2^(2n) (n!)^2 )) ⇒A_(2n) =(((2n)!)/(2^(2n) (n!)^2 )) A_0 ⇒A_(2n) =(((2n)!)/(2^(2n) (n!)^2 ))×(π/2) A_(2n+1) =((2n)/(2n+1)) A_(2n−1) ⇒Π_(k=1) ^n (A_(2k+1) /A_(2k−1) ) =Π_(k=1) ^n ((2k)/(2k+1)) ⇒ (A_3 /A_1 )×(A_5 /A_3 )×.....(A_(2n+1) /A_(2n−1) ) =((2^n n!)/(3.5.....(2n+1))) =((2^(2n) (n!)^2 )/(2.3.4.5....(2n)(2n+1))) =((2^(2n) (n!)^2 )/((2n+1)!)) ⇒A_(2n+1) =((2^(2n) (n!)^2 )/((2n+1)!))×A_1 but A_1 =1 ⇒ A_(2n+1) =((2^(2n) (n!)^2 )/((2n+1)!))](https://www.tinkutara.com/question/Q94252.png)
Commented by mathmax by abdo last updated on 17/May/20

Commented by Ar Brandon last updated on 17/May/20

Commented by mathmax by abdo last updated on 17/May/20

Answered by Ar Brandon last updated on 16/May/20

Answered by Ar Brandon last updated on 16/May/20
![2\B=∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^n ))=∫_(−∞) ^(+∞) (dx/([(x−(1/2))^2 +(((√3)/2))^2 ]^n )) Consider J_n =∫_(−∞) ^(+∞) (dx/((x^2 +u^2 )^n ))⇒J_n =((2n−3)/(2u^2 (n−1)))J_(n−1) ⇒u=((√3)/2)⇒B_n =((4n−6)/(3(n−1)))B_(n−1)](https://www.tinkutara.com/question/Q93922.png)