Menu Close

1-calculate-A-n-0-pi-2-cos-n-x-dx-2-calculate-dx-x-2-x-1-n-n-integr-natural-




Question Number 93907 by abdomathmax last updated on 16/May/20
1) calculate  A_n =∫_0 ^(π/2)  cos^n x dx  2) calculate ∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^n ))  n integr natural
1)calculateAn=0π2cosnxdx2)calculate+dx(x2x+1)nnintegrnatural
Commented by mathmax by abdo last updated on 17/May/20
1) A_(n+2) =∫_0 ^(π/2)  cos^(n+2) x dx =∫_0 ^(π/2)  (1−sin^2 x)cos^n x dx  =A_n −∫_0 ^(π/2)  sin^2 x cos^n x dx but by parts u =sinx and v^′  =sinx cos^n x  ∫_0 ^(π/2)  sin^2 x cos^n xdx =[−(1/(n+1))cos^(n+1) x sinx]_0 ^(π/2) +∫_0 ^(π/2)  (1/(n+1))cos^(n+2)  xdx ⇒  A_(n+2) =A_n −(1/(n+1)) A_(n+2 )  ⇒(1+(1/(n+1)))A_(n+2) =A_n  ⇒  A_(n+2) =((n+1)/(n+2)) A_n  ⇒ A_n =((n−1)/n) A_(n−2)   A_(2k) =((2k−1)/(2k)) A_(2k−2)   ⇒Π_(k=1) ^n  (A_(2k) /A_(2k−2) ) =Π_(k=1) ^n  ((2k−1)/(2k)) ⇒  (A_2 /A_0 )×(A_4 /A_2 )×....(A_(2n) /A_(2n−2) ) =((1.3.5.....(2n−1))/(2^n  n!)) =((1.2.3.4...(2n−1)(2n))/(2^n n! 2^n n!))  =(((2n)!)/(2^(2n) (n!)^2 )) ⇒A_(2n) =(((2n)!)/(2^(2n) (n!)^2 )) A_0  ⇒A_(2n) =(((2n)!)/(2^(2n) (n!)^2 ))×(π/2)  A_(2n+1) =((2n)/(2n+1)) A_(2n−1)  ⇒Π_(k=1) ^n  (A_(2k+1) /A_(2k−1) ) =Π_(k=1) ^n  ((2k)/(2k+1)) ⇒  (A_3 /A_1 )×(A_5 /A_3 )×.....(A_(2n+1) /A_(2n−1) ) =((2^n n!)/(3.5.....(2n+1))) =((2^(2n) (n!)^2 )/(2.3.4.5....(2n)(2n+1)))  =((2^(2n) (n!)^2 )/((2n+1)!)) ⇒A_(2n+1) =((2^(2n) (n!)^2 )/((2n+1)!))×A_1   but A_1 =1 ⇒  A_(2n+1) =((2^(2n) (n!)^2 )/((2n+1)!))
1)An+2=0π2cosn+2xdx=0π2(1sin2x)cosnxdx=An0π2sin2xcosnxdxbutbypartsu=sinxandv=sinxcosnx0π2sin2xcosnxdx=[1n+1cosn+1xsinx]0π2+0π21n+1cosn+2xdxAn+2=An1n+1An+2(1+1n+1)An+2=AnAn+2=n+1n+2AnAn=n1nAn2A2k=2k12kA2k2k=1nA2kA2k2=k=1n2k12kA2A0×A4A2×.A2nA2n2=1.3.5..(2n1)2nn!=1.2.3.4(2n1)(2n)2nn!2nn!=(2n)!22n(n!)2A2n=(2n)!22n(n!)2A0A2n=(2n)!22n(n!)2×π2A2n+1=2n2n+1A2n1k=1nA2k+1A2k1=k=1n2k2k+1A3A1×A5A3×..A2n+1A2n1=2nn!3.5..(2n+1)=22n(n!)22.3.4.5.(2n)(2n+1)=22n(n!)2(2n+1)!A2n+1=22n(n!)2(2n+1)!×A1butA1=1A2n+1=22n(n!)2(2n+1)!
Commented by mathmax by abdo last updated on 17/May/20
2) let I_n =∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^n )) ⇒I_n =∫_(−∞) ^(+∞)  (dx/({(x−(1/2))^2  +(3/4)}^n ))  =_(x−(1/2)=((√3)/2)t)   ((4/3))^n ∫_(−∞) ^(+∞)   (1/((t^2 +1)^n ))×((√3)/2)dt  =((√3)/2)((4/3))^n  ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^n )) = (√3)((4/3))^n  ∫_0 ^∞  (dt/((1+t^2 )^n ))  =_(t=tanθ)    (√3)((4/3))^n  ∫_0 ^(π/2)  (((1+tan^2 θ)dθ)/((1+tan^2 θ)^n ))  =(√3)((4/3))^n  ∫_0 ^(π/2) (dθ/((1+tan^2 θ)^(n−1) )) =(√3)((4/3))^n  ∫_0 ^(π/2) cos^(2n−2) θ dθ  but ∫_0 ^(π/2)  cos^(2n) θ dθ =A_(2n) =(((2n)!)/(2^(2n) (n!)^2 ))×(π/2) ⇒  I_n =(√3)((4/3))^n ×(((2n−2)!)/(2^(2n−2) ((n−1)!)^2 ))×(π/2)
2)letIn=+dx(x2x+1)nIn=+dx{(x12)2+34}n=x12=32t(43)n+1(t2+1)n×32dt=32(43)n+dt(t2+1)n=3(43)n0dt(1+t2)n=t=tanθ3(43)n0π2(1+tan2θ)dθ(1+tan2θ)n=3(43)n0π2dθ(1+tan2θ)n1=3(43)n0π2cos2n2θdθbut0π2cos2nθdθ=A2n=(2n)!22n(n!)2×π2In=3(43)n×(2n2)!22n2((n1)!)2×π2
Commented by Ar Brandon last updated on 17/May/20
Amazing.  Please I′ll like to know is A_(2n)  same as  A_(2n) =(((2n−1)!)/((2n)!))×(π/2)    ?
Amazing.PleaseIllliketoknowisA2nsameasA2n=(2n1)!(2n)!×π2?
Commented by mathmax by abdo last updated on 17/May/20
sir verify for n=1,2,3  and prove it by recurrence..if itis correct...
sirverifyforn=1,2,3andproveitbyrecurrence..ifitiscorrect
Answered by Ar Brandon last updated on 16/May/20
A_n =(1/2)∙(3/4)∙(5/6)∙∙∙((n−1)/n)∙(π/2) if n is even        =(2/3)∙(4/5)∙(6/7)∙∙∙((n−1)/n)  if n is odd
An=123456n1nπ2ifniseven=234567n1nifnisodd
Answered by Ar Brandon last updated on 16/May/20
2\B=∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^n ))=∫_(−∞) ^(+∞) (dx/([(x−(1/2))^2 +(((√3)/2))^2 ]^n ))  Consider J_n =∫_(−∞) ^(+∞) (dx/((x^2 +u^2 )^n ))⇒J_n =((2n−3)/(2u^2 (n−1)))J_(n−1)   ⇒u=((√3)/2)⇒B_n =((4n−6)/(3(n−1)))B_(n−1)
2B=+dx(x2x+1)n=+dx[(x12)2+(32)2]nConsiderJn=+dx(x2+u2)nJn=2n32u2(n1)Jn1u=32Bn=4n63(n1)Bn1

Leave a Reply

Your email address will not be published. Required fields are marked *