Menu Close

1-calculate-A-n-0-x-n-1-e-x-1-dx-with-n-integr-natural-n-2-2-find-the-value-of-0-x-e-x-1-dx-




Question Number 53599 by maxmathsup by imad last updated on 23/Jan/19
1) calculate A_n =∫_0 ^∞    (x^(n−1) /(e^x  +1)) dx   with n integr natural  (n≥2)  2) find the value of ∫_0 ^∞     (x/(e^x  +1))dx
1)calculateAn=0xn1ex+1dxwithnintegrnatural(n2)2)findthevalueof0xex+1dx
Commented by maxmathsup by imad last updated on 24/Jan/19
1) we have A_n =∫_0 ^∞   ((x^(n−1)  e^(−x) )/(1+e^(−x) ))dx =∫_0 ^∞  x^(n−1) e^(−x) (Σ_(p=0) ^∞  (−1)^p e^(−px) )dx  =Σ_(p=0) ^∞  (−1)^p  ∫_0 ^∞  x^(n−1)  e^(−(p+1)x) dx =Σ_(p=0) ^∞  (−1)^p  A_p   A_p =∫_0 ^∞  x^(n−1)  e^(−(p+1)x) dx =_((p+1)x=t)      ∫_0 ^∞   ((t/(p+1)))^(n−1)  e^(−t)  (dt/(p+1))  =(1/((p+1)^n )) ∫_0 ^∞  t^(n−1)  e^(−t) dt =((Γ(n))/((p+1)^n )) ⇒ A_n =Γ(n) Σ_(p=0) ^∞  (((−1)^p )/((p+1)^n ))  =Γ(n).Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n )   let remember ξ(x)=Σ_(p=1) ^∞  (1/p^x )  with x>1  we have Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n ) =−Σ_(k=1) ^∞   (1/((2k)^n )) +Σ_(k=0) ^∞  (1/((2k+1)^n ))  =−(1/2^n ) ξ(n) +Σ_(k=0) ^∞   (1/((2k+1)^n )) but  ξ(n) =Σ_(p=1) ^∞   (1/p^n ) =Σ_(k=1) ^n  (1/((2k)^n )) +Σ_(k=0) ^∞   (1/((2k+1)^n )) =(1/2^n )ξ(n)+Σ_(k=0) ^∞  (1/((2k+1)^n )) ⇒  Σ_(k=0) ^n  (1/((2k+1)^n )) =(1−2^(−n) )ξ(n) ⇒Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n ) =−2^(−n) ξ(n) +(1−2^(−n) )ξ(n)  =(1−2^(1−n) )ξ(n) ⇒ A_n =(1−2^(1−n) )ξ(n)Γ(n)  Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt ⇒Γ(n) =∫_0 ^∞  t^(n−1)  e^(−t)  dt =[(1/n)t^n  e^(−t) ]_0 ^(+∞) +∫_0 ^∞  (t^n /n) e^(−t) dt  =(1/n)Γ(n+1) ⇒Γ(n+1)=nΓ(n) ⇒Γ(n+1)=n! ⇒  A_n =(1−2^(1−n) )ξ(n)(n−1)!  2) we see that  ∫_0 ^∞    (x/(e^x +1)) dx =A_2 =(1−(1/2))ξ(2) =(1/2).(π^2 /6) =(π^2 /(12)) .
1)wehaveAn=0xn1ex1+exdx=0xn1ex(p=0(1)pepx)dx=p=0(1)p0xn1e(p+1)xdx=p=0(1)pApAp=0xn1e(p+1)xdx=(p+1)x=t0(tp+1)n1etdtp+1=1(p+1)n0tn1etdt=Γ(n)(p+1)nAn=Γ(n)p=0(1)p(p+1)n=Γ(n).p=1(1)p1pnletrememberξ(x)=p=11pxwithx>1wehavep=1(1)p1pn=k=11(2k)n+k=01(2k+1)n=12nξ(n)+k=01(2k+1)nbutξ(n)=p=11pn=k=1n1(2k)n+k=01(2k+1)n=12nξ(n)+k=01(2k+1)nk=0n1(2k+1)n=(12n)ξ(n)p=1(1)p1pn=2nξ(n)+(12n)ξ(n)=(121n)ξ(n)An=(121n)ξ(n)Γ(n)Γ(x)=0tx1etdtΓ(n)=0tn1etdt=[1ntnet]0++0tnnetdt=1nΓ(n+1)Γ(n+1)=nΓ(n)Γ(n+1)=n!An=(121n)ξ(n)(n1)!2)weseethat0xex+1dx=A2=(112)ξ(2)=12.π26=π212.

Leave a Reply

Your email address will not be published. Required fields are marked *