1-calculate-A-n-0-x-n-1-e-x-1-dx-with-n-integr-natural-n-2-2-find-the-value-of-0-x-e-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53599 by maxmathsup by imad last updated on 23/Jan/19 1)calculateAn=∫0∞xn−1ex+1dxwithnintegrnatural(n⩾2)2)findthevalueof∫0∞xex+1dx Commented by maxmathsup by imad last updated on 24/Jan/19 1)wehaveAn=∫0∞xn−1e−x1+e−xdx=∫0∞xn−1e−x(∑p=0∞(−1)pe−px)dx=∑p=0∞(−1)p∫0∞xn−1e−(p+1)xdx=∑p=0∞(−1)pApAp=∫0∞xn−1e−(p+1)xdx=(p+1)x=t∫0∞(tp+1)n−1e−tdtp+1=1(p+1)n∫0∞tn−1e−tdt=Γ(n)(p+1)n⇒An=Γ(n)∑p=0∞(−1)p(p+1)n=Γ(n).∑p=1∞(−1)p−1pnletrememberξ(x)=∑p=1∞1pxwithx>1wehave∑p=1∞(−1)p−1pn=−∑k=1∞1(2k)n+∑k=0∞1(2k+1)n=−12nξ(n)+∑k=0∞1(2k+1)nbutξ(n)=∑p=1∞1pn=∑k=1n1(2k)n+∑k=0∞1(2k+1)n=12nξ(n)+∑k=0∞1(2k+1)n⇒∑k=0n1(2k+1)n=(1−2−n)ξ(n)⇒∑p=1∞(−1)p−1pn=−2−nξ(n)+(1−2−n)ξ(n)=(1−21−n)ξ(n)⇒An=(1−21−n)ξ(n)Γ(n)Γ(x)=∫0∞tx−1e−tdt⇒Γ(n)=∫0∞tn−1e−tdt=[1ntne−t]0+∞+∫0∞tnne−tdt=1nΓ(n+1)⇒Γ(n+1)=nΓ(n)⇒Γ(n+1)=n!⇒An=(1−21−n)ξ(n)(n−1)!2)weseethat∫0∞xex+1dx=A2=(1−12)ξ(2)=12.π26=π212. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184668Next Next post: calculate-A-m-0-sin-mx-e-2pix-1-dx-with-m-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.