Menu Close

1-calculate-A-n-1-n-1-ln-1-x-2-1-x-2-dx-with-n-integr-and-n-1-2-find-lim-n-A-n-3-study-the-convergence-of-A-n-




Question Number 56329 by maxmathsup by imad last updated on 14/Mar/19
1)calculate A_n =∫_(1/n) ^1   ((ln(1+x^2 ))/(1+x^2 ))dx    with n integr and n≥1  2) find lim_(n→+∞)     A_n   3)  study the convergence of Σ A_n
1)calculateAn=1n1ln(1+x2)1+x2dxwithnintegrandn12)findlimn+An3)studytheconvergenceofΣAn
Commented by maxmathsup by imad last updated on 17/Mar/19
1) A_n =_(x=tanθ)    ∫_(arctan((1/n))) ^(π/4)  ((ln(1+tan^2 θ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  = ∫_(arctan((1/n))) ^(π/4)  ln ((1/(cos^2 θ)))dθ =−2 ∫_(arctan((1/n))) ^(π/4)  ln(cosθ)dθ ⇒  lim_(n→+∞)  A_n =−2 ∫_0 ^(π/4) ln(cosθ)dθ  let I =∫_0 ^(π/4)  ln(cosθ)dθ and  J =∫_0 ^(π/4)  ln(sinθ)dθ   we have  I +J =∫_0 ^(π/4)   ln(cosθ sinθ)dθ  = ∫_0 ^(π/4) ln(((sin(2θ))/2))dθ =−(π/4)ln(2) +∫_0 ^(π/4)  ln(sin(2θ))dθ but  ∫_0 ^(π/4) ln(sin(2θ)dθ =_(2θ =t)    (1/2)∫_0 ^(π/2)  ln(sint) dt =(1/2)(−(π/2)ln(2)) =−(π/4)ln(2) ⇒  I +J =−(π/2)ln(2)  I =∫_0 ^(π/4)  ln(cosθ)dθ =_(θ =t−(π/2))    ∫_(π/2) ^((3π)/4)  ln(sinθ)dθ  =∫_(π/2) ^0 ln(sinθ)dθ +∫_0 ^((3π)/4) ln(sinθ)dθ  =(π/2)ln(2)+ ∫_0 ^((3π)/4) ln(sinθ)dθ  ....be continued....
1)An=x=tanθarctan(1n)π4ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=arctan(1n)π4ln(1cos2θ)dθ=2arctan(1n)π4ln(cosθ)dθlimn+An=20π4ln(cosθ)dθletI=0π4ln(cosθ)dθandJ=0π4ln(sinθ)dθwehaveI+J=0π4ln(cosθsinθ)dθ=0π4ln(sin(2θ)2)dθ=π4ln(2)+0π4ln(sin(2θ))dθbut0π4ln(sin(2θ)dθ=2θ=t120π2ln(sint)dt=12(π2ln(2))=π4ln(2)I+J=π2ln(2)I=0π4ln(cosθ)dθ=θ=tπ2π23π4ln(sinθ)dθ=π20ln(sinθ)dθ+03π4ln(sinθ)dθ=π2ln(2)+03π4ln(sinθ)dθ.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *