Question Number 65398 by mathmax by abdo last updated on 29/Jul/19
$$\left.\mathrm{1}\right)\:{calculate}\:\:{A}_{{n}} =\int\int_{\left[\mathrm{1},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\:{sin}\left({x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} \right)\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 31/Jul/19
$$\left.\mathrm{1}\right)\:{let}\:{consider}\:{thediffeomorphism}\:\left({r},\theta\right)\rightarrow\left({x},{y}\right)=\left({rcos}\theta,\frac{{r}}{\:\sqrt{\mathrm{3}}}{sin}\theta\right) \\ $$$$\varphi\left({r},\theta\right)\:=\left(\varphi_{\mathrm{1}} ,\varphi_{\mathrm{2}} \right)\:/\:\varphi_{\mathrm{1}} \left({r},\theta\right)={rcos}\theta\:{and}\:\varphi_{\mathrm{2}} \left({r},\theta\right)=\frac{{r}}{\:\sqrt{\mathrm{3}}}{sin}\theta \\ $$$${M}_{{j}} \left(\varphi\right)\:=\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{r}}\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial\theta}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{r}}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial\theta}}\end{pmatrix} \\ $$$$=\begin{pmatrix}{{cos}\theta\:\:\:\:\:\:\:\:\:\:\:\:−{rsin}\theta}\\{\frac{{sin}\theta}{\:\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{r}}{\:\sqrt{\mathrm{3}}}{cos}\theta}\end{pmatrix} \\ $$$${and}\:{detM}_{{j}} \left(\varphi\right)\:=\frac{{r}}{\:\sqrt{\mathrm{3}}}\:\:{we}\:{have}\:\:\:\mathrm{1}\leqslant{x}<{n}\:\:{and}\:\:\mathrm{1}\leqslant{y}<{n}\:\Rightarrow \\ $$$$\mathrm{1}\leqslant{x}^{\mathrm{2}} <{n}^{\mathrm{2}} \:{and}\mathrm{3}\leqslant\mathrm{3}{y}^{\mathrm{2}} <\mathrm{3}{n}^{\mathrm{2}} \:\Rightarrow\mathrm{4}\leqslant{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} <\mathrm{4}{n}^{\mathrm{2}\:} \:\Rightarrow\mathrm{2}\leqslant{r}<\mathrm{2}{n} \\ $$$${A}_{{n}} =\int\int_{\mathrm{2}\leqslant{r}<\mathrm{2}{n}\:{and}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}} \:\:\:\:{sin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } \frac{{r}}{\:\sqrt{\mathrm{3}}}\:{drd}\theta \\ $$$$=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:{r}\:{sin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } {dr} \\ $$$${by}\:{parts}\:{u}^{'} \:={r}\:{sin}\left({r}^{\mathrm{2}} \right)\:{and}\:{v}\:={e}^{−{r}^{\mathrm{2}} } \:\Rightarrow \\ $$$$\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:\:{rsin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } {dr}\:=\left[−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } \right]_{\mathrm{2}} ^{\mathrm{2}{n}} \:−\int_{\mathrm{2}} ^{\mathrm{2}{n}} \left(−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left({r}^{\mathrm{2}} \right)\right)\left(−\mathrm{2}{r}\right){e}^{−{r}^{\mathrm{2}} } {dr} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\mathrm{4}{n}^{\mathrm{2}} \right){e}^{−\mathrm{4}{n}^{\mathrm{2}} } \:−{cos}\left(\mathrm{4}\right){e}^{−\mathrm{4}} \right\}−\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:{r}\:{cos}\left({r}^{\mathrm{2}} \right)\:{e}^{−{r}^{\mathrm{2}} } {dr} \\ $$$${again}\:{by}\:{parts}\:\:{u}^{'} \:={rcos}\left({r}^{\mathrm{2}} \right)\:{and}\:{v}\:={e}^{−{r}^{\mathrm{2}} } \Rightarrow \\ $$$$\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:{rcos}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } {dr}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{sin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } \right]_{\mathrm{2}} ^{\mathrm{2}{n}} \:−\int_{\mathrm{2}} ^{\mathrm{2}{n}} \frac{\mathrm{1}}{\mathrm{2}}{sin}\left({r}^{\mathrm{2}} \right)\left(−\mathrm{2}{r}\right){e}^{−{r}^{\mathrm{2}} } {dr} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{sin}\left(\mathrm{4}{n}^{\mathrm{2}} \right){e}^{−\mathrm{4}{n}^{\mathrm{2}} } −{sin}\mathrm{4}\:{e}^{−\mathrm{4}} \right\}\:+\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:{rsin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } {dr}\:\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{2}{n}} \:{rsin}\left({r}^{\mathrm{2}} \right){e}^{−{r}^{\mathrm{2}} } {dr}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\mathrm{4}\right){e}^{−\mathrm{4}} −{cos}\left(\mathrm{4}{n}^{\mathrm{2}} \right){e}^{−\mathrm{4}{n}^{\mathrm{2}} } \right\} \\ $$$$+\frac{\mathrm{1}}{\mathrm{2}}\left\{{sin}\left(\mathrm{4}\right){e}^{−\mathrm{4}} −{sin}\left(\mathrm{4}{n}^{\mathrm{2}} \right){e}^{−\mathrm{4}{n}^{\mathrm{2}} } \right\}\:\Rightarrow \\ $$$${A}_{{n}} =\frac{\pi}{\mathrm{8}}\left\{\:\:{e}^{−\mathrm{4}} \left({cos}\left(\mathrm{4}\right)+{sin}\mathrm{4}\right)−{e}^{−\mathrm{4}{n}^{\mathrm{2}} } \left({cos}\left(\mathrm{4}{n}^{\mathrm{2}} \right)+{sin}\left(\mathrm{4}{n}^{\mathrm{2}} \right)\right\}\right. \\ $$$$\left.\mathrm{2}\right)\:{lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} =\frac{\pi{e}^{−\mathrm{4}} }{\mathrm{8}}\left\{\:{cos}\left(\mathrm{4}\right)+{sin}\left(\mathrm{4}\right)\right\} \\ $$$$ \\ $$