1-calculate-A-n-1-n-2-sin-x-2-3y-2-e-x-2-3y-2-dxdy-2-determine-lim-n-A-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65398 by mathmax by abdo last updated on 29/Jul/19 1)calculateAn=∫∫[1,n[2sin(x2+3y2)e−x2−3y2dxdy2)determinelimn→+∞An Commented by mathmax by abdo last updated on 31/Jul/19 1)letconsiderthediffeomorphism(r,θ)→(x,y)=(rcosθ,r3sinθ)φ(r,θ)=(φ1,φ2)/φ1(r,θ)=rcosθandφ2(r,θ)=r3sinθMj(φ)=(∂φ1∂r∂φ1∂θ∂φ2∂r∂φ2∂θ)=(cosθ−rsinθsinθ3r3cosθ)anddetMj(φ)=r3wehave1⩽x<nand1⩽y<n⇒1⩽x2<n2and3⩽3y2<3n2⇒4⩽x2+3y2<4n2⇒2⩽r<2nAn=∫∫2⩽r<2nand0⩽θ⩽π2sin(r2)e−r2r3drdθ=π2∫22nrsin(r2)e−r2drbypartsu′=rsin(r2)andv=e−r2⇒∫22nrsin(r2)e−r2dr=[−12cos(r2)e−r2]22n−∫22n(−12cos(r2))(−2r)e−r2dr=−12{cos(4n2)e−4n2−cos(4)e−4}−∫22nrcos(r2)e−r2dragainbypartsu′=rcos(r2)andv=e−r2⇒∫22nrcos(r2)e−r2dr=[12sin(r2)e−r2]22n−∫22n12sin(r2)(−2r)e−r2dr=12{sin(4n2)e−4n2−sin4e−4}+∫22nrsin(r2)e−r2dr⇒2∫22nrsin(r2)e−r2dr=12{cos(4)e−4−cos(4n2)e−4n2}+12{sin(4)e−4−sin(4n2)e−4n2}⇒An=π8{e−4(cos(4)+sin4)−e−4n2(cos(4n2)+sin(4n2)}2)limn→+∞An=πe−48{cos(4)+sin(4)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-130933Next Next post: find-f-1-arctan-x-1-x-2-dx-with-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.