Question Number 53967 by maxmathsup by imad last updated on 27/Jan/19

Commented by maxmathsup by imad last updated on 28/Jan/19
![1) we have A_t =Im(∫_0 ^∞ e^(−xt) e^(ix) dx) =Im(∫_0 ^∞ e^((i−t)x) dx) ∫_0 ^∞ e^((i−t)x) dx =[(1/(i−x)) e^((i−t)x) ]_(x=0) ^(x=+∞) = −(1/(i−t)) =(1/(t−i)) =((t+i)/(t^2 +1)) ⇒ A_t = (1/(t^2 +1)) 2) we have ∫_0 ^∞ A_t dt =∫_0 ^∞ (dt/(t^2 +1)) =[arctant]_0 ^(+∞) =(π/2) and by fubini ∫_0 ^∞ A_t dt =∫_0 ^∞ (∫_0 ^∞ e^(−xt) sinxdx)dt =∫_0 ^∞ (∫_0 ^∞ e^(−xt) dt)sinxdx =∫_0 ^∞ ([−(1/x) e^(−xt) ]_(t=0) ^(t=+∞) )sinx dx =∫_0 ^∞ ((sinx)/x) dx ⇒ ∫_0 ^∞ ((sinx)/x) dx =(π/2) .](https://www.tinkutara.com/question/Q54065.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
