Menu Close

1-calculate-A-t-0-e-xt-sinxdx-with-x-gt-0-2-by-using-Fubuni-theorem-find-the-value-of-0-sinx-x-dx-




Question Number 53967 by maxmathsup by imad last updated on 27/Jan/19
1)calculate A_t =∫_0 ^∞  e^(−xt)  sinxdx  with x>0  2) by using Fubuni theorem find the value of ∫_0 ^∞   ((sinx)/x)dx .
1)calculateAt=0extsinxdxwithx>02)byusingFubunitheoremfindthevalueof0sinxxdx.
Commented by maxmathsup by imad last updated on 28/Jan/19
1) we have A_t =Im(∫_0 ^∞  e^(−xt)  e^(ix) dx) =Im(∫_0 ^∞  e^((i−t)x) dx)  ∫_0 ^∞   e^((i−t)x) dx =[(1/(i−x)) e^((i−t)x) ]_(x=0) ^(x=+∞)  = −(1/(i−t)) =(1/(t−i)) =((t+i)/(t^2  +1)) ⇒  A_t = (1/(t^2  +1))  2)  we have ∫_0 ^∞  A_t dt =∫_0 ^∞   (dt/(t^2  +1)) =[arctant]_0 ^(+∞)  =(π/2)  and by fubini  ∫_0 ^∞  A_t dt =∫_0 ^∞ (∫_0 ^∞  e^(−xt)  sinxdx)dt =∫_0 ^∞  (∫_0 ^∞  e^(−xt) dt)sinxdx  =∫_0 ^∞  ([−(1/x) e^(−xt) ]_(t=0) ^(t=+∞) )sinx dx =∫_0 ^∞  ((sinx)/x) dx ⇒  ∫_0 ^∞   ((sinx)/x) dx =(π/2) .
1)wehaveAt=Im(0exteixdx)=Im(0e(it)xdx)0e(it)xdx=[1ixe(it)x]x=0x=+=1it=1ti=t+it2+1At=1t2+12)wehave0Atdt=0dtt2+1=[arctant]0+=π2andbyfubini0Atdt=0(0extsinxdx)dt=0(0extdt)sinxdx=0([1xext]t=0t=+)sinxdx=0sinxxdx0sinxxdx=π2.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
B_t =∫_0 ^∞ e^(−xt) cosxdx  A_t =∫_0 ^∞ e^(−xt) sinxdx  B_t +iA_t =∫_0 ^∞ e^(−xt) (cosx+isinx)dx  B_t +iA_t =∫_0 ^∞ e^(−xt) .e^(ix) dx=∫_0 ^∞ e^(−xt+ix) dx  =∫_0 ^∞ e^(x(−t+i)) dx=∣(e^(x(−t+i)) /(−t+i))∣_0 ^∞   =∣(e^(−x(t−i)) /(−t+i))∣_0 ^∞ =((e^(−∞(t−i)) −e^0 )/(−t+i))=((−1)/(−t+i))=(1/(t−i))  =((t+i)/(t^2 +1))=(t/(t^2 +1))+i×(1/(t^2 +1))  so B_t =(t/(t^2 +1))   A_t =(1/(t^2 +1))
Bt=0extcosxdxAt=0extsinxdxBt+iAt=0ext(cosx+isinx)dxBt+iAt=0ext.eixdx=0ext+ixdx=0ex(t+i)dx=∣ex(t+i)t+i0=∣ex(ti)t+i0=e(ti)e0t+i=1t+i=1ti=t+it2+1=tt2+1+i×1t2+1soBt=tt2+1At=1t2+1
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
C_t =∫_0 ^∞ e^(−xt)  ((sinx)/x)dx  (dC_t /dt)=∫_0 ^∞ (∂/∂t)(((e^(−xt) sinx)/x))dx          =∫_0 ^∞ ((e^(−xt) ×−x×sinx)/x)dx            =−∫_0 ^∞ e^(−xt) sinxdx=−A_t   (dC_t /dt)=−(1/(t^2 +1))  −dC_t =(dt/(t^2 +1))  −C_t =tan^(−1) (t)+k  k=−C_t −tan^(−1) (t)  when t→∞  C_t →0  and tan^(−1) (t)→(π/2)  so k=−(π/2)  −C_t =tan^(−1) (t)−(π/2)  we have to find  ∫_0 ^∞ ((sinx)/x)dx  we know that  −∫_0 ^∞ e^(−xt) ((sinx)/x)dx=tan^(−1) (t)−(π/2)    now put t=0 botb side  −∫_0 ^∞ ((sinx)/x)=tan^(−1) (0)−(π/2)  so ∫_0 ^∞ ((sinx)/x)=(π/2)  proved
Ct=0extsinxxdxdCtdt=0t(extsinxx)dx=0ext×x×sinxxdx=0extsinxdx=AtdCtdt=1t2+1dCt=dtt2+1Ct=tan1(t)+kk=Cttan1(t)whentCt0andtan1(t)π2sok=π2Ct=tan1(t)π2wehavetofind0sinxxdxweknowthat0extsinxxdx=tan1(t)π2nowputt=0botbside0sinxx=tan1(0)π2so0sinxx=π2proved

Leave a Reply

Your email address will not be published. Required fields are marked *