Menu Close

1-calculate-A-t-0-e-xt-sinxdx-with-x-gt-0-2-by-using-Fubuni-theorem-find-the-value-of-0-sinx-x-dx-




Question Number 53967 by maxmathsup by imad last updated on 27/Jan/19
1)calculate A_t =∫_0 ^∞  e^(−xt)  sinxdx  with x>0  2) by using Fubuni theorem find the value of ∫_0 ^∞   ((sinx)/x)dx .
$$\left.\mathrm{1}\right){calculate}\:{A}_{{t}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{sinxdx}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{by}\:{using}\:{Fubuni}\:{theorem}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}{dx}\:. \\ $$
Commented by maxmathsup by imad last updated on 28/Jan/19
1) we have A_t =Im(∫_0 ^∞  e^(−xt)  e^(ix) dx) =Im(∫_0 ^∞  e^((i−t)x) dx)  ∫_0 ^∞   e^((i−t)x) dx =[(1/(i−x)) e^((i−t)x) ]_(x=0) ^(x=+∞)  = −(1/(i−t)) =(1/(t−i)) =((t+i)/(t^2  +1)) ⇒  A_t = (1/(t^2  +1))  2)  we have ∫_0 ^∞  A_t dt =∫_0 ^∞   (dt/(t^2  +1)) =[arctant]_0 ^(+∞)  =(π/2)  and by fubini  ∫_0 ^∞  A_t dt =∫_0 ^∞ (∫_0 ^∞  e^(−xt)  sinxdx)dt =∫_0 ^∞  (∫_0 ^∞  e^(−xt) dt)sinxdx  =∫_0 ^∞  ([−(1/x) e^(−xt) ]_(t=0) ^(t=+∞) )sinx dx =∫_0 ^∞  ((sinx)/x) dx ⇒  ∫_0 ^∞   ((sinx)/x) dx =(π/2) .
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{A}_{{t}} ={Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{e}^{{ix}} {dx}\right)\:={Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{\left({i}−{t}\right){x}} {dx}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left({i}−{t}\right){x}} {dx}\:=\left[\frac{\mathrm{1}}{{i}−{x}}\:{e}^{\left({i}−{t}\right){x}} \right]_{{x}=\mathrm{0}} ^{{x}=+\infty} \:=\:−\frac{\mathrm{1}}{{i}−{t}}\:=\frac{\mathrm{1}}{{t}−{i}}\:=\frac{{t}+{i}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${A}_{{t}} =\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:\:{we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:{A}_{{t}} {dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:=\left[{arctant}\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\pi}{\mathrm{2}}\:\:{and}\:{by}\:{fubini} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{A}_{{t}} {dt}\:=\int_{\mathrm{0}} ^{\infty} \left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{sinxdx}\right){dt}\:=\int_{\mathrm{0}} ^{\infty} \:\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {dt}\right){sinxdx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\left(\left[−\frac{\mathrm{1}}{{x}}\:{e}^{−{xt}} \right]_{{t}=\mathrm{0}} ^{{t}=+\infty} \right){sinx}\:{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}\:{dx}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{dx}\:=\frac{\pi}{\mathrm{2}}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
B_t =∫_0 ^∞ e^(−xt) cosxdx  A_t =∫_0 ^∞ e^(−xt) sinxdx  B_t +iA_t =∫_0 ^∞ e^(−xt) (cosx+isinx)dx  B_t +iA_t =∫_0 ^∞ e^(−xt) .e^(ix) dx=∫_0 ^∞ e^(−xt+ix) dx  =∫_0 ^∞ e^(x(−t+i)) dx=∣(e^(x(−t+i)) /(−t+i))∣_0 ^∞   =∣(e^(−x(t−i)) /(−t+i))∣_0 ^∞ =((e^(−∞(t−i)) −e^0 )/(−t+i))=((−1)/(−t+i))=(1/(t−i))  =((t+i)/(t^2 +1))=(t/(t^2 +1))+i×(1/(t^2 +1))  so B_t =(t/(t^2 +1))   A_t =(1/(t^2 +1))
$${B}_{{t}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} {cosxdx} \\ $$$${A}_{{t}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} {sinxdx} \\ $$$${B}_{{t}} +{iA}_{{t}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} \left({cosx}+{isinx}\right){dx} \\ $$$${B}_{{t}} +{iA}_{{t}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} .{e}^{{ix}} {dx}=\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}+{ix}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{{x}\left(−{t}+{i}\right)} {dx}=\mid\frac{{e}^{{x}\left(−{t}+{i}\right)} }{−{t}+{i}}\mid_{\mathrm{0}} ^{\infty} \\ $$$$=\mid\frac{{e}^{−{x}\left({t}−{i}\right)} }{−{t}+{i}}\mid_{\mathrm{0}} ^{\infty} =\frac{{e}^{−\infty\left({t}−{i}\right)} −{e}^{\mathrm{0}} }{−{t}+{i}}=\frac{−\mathrm{1}}{−{t}+{i}}=\frac{\mathrm{1}}{{t}−{i}} \\ $$$$=\frac{{t}+{i}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+{i}×\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$${so}\:{B}_{{t}} =\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\:\:\:{A}_{{t}} =\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
C_t =∫_0 ^∞ e^(−xt)  ((sinx)/x)dx  (dC_t /dt)=∫_0 ^∞ (∂/∂t)(((e^(−xt) sinx)/x))dx          =∫_0 ^∞ ((e^(−xt) ×−x×sinx)/x)dx            =−∫_0 ^∞ e^(−xt) sinxdx=−A_t   (dC_t /dt)=−(1/(t^2 +1))  −dC_t =(dt/(t^2 +1))  −C_t =tan^(−1) (t)+k  k=−C_t −tan^(−1) (t)  when t→∞  C_t →0  and tan^(−1) (t)→(π/2)  so k=−(π/2)  −C_t =tan^(−1) (t)−(π/2)  we have to find  ∫_0 ^∞ ((sinx)/x)dx  we know that  −∫_0 ^∞ e^(−xt) ((sinx)/x)dx=tan^(−1) (t)−(π/2)    now put t=0 botb side  −∫_0 ^∞ ((sinx)/x)=tan^(−1) (0)−(π/2)  so ∫_0 ^∞ ((sinx)/x)=(π/2)  proved
$${C}_{{t}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} \:\frac{{sinx}}{{x}}{dx} \\ $$$$\frac{{dC}_{{t}} }{{dt}}=\int_{\mathrm{0}} ^{\infty} \frac{\partial}{\partial{t}}\left(\frac{{e}^{−{xt}} {sinx}}{{x}}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{xt}} ×−{x}×{sinx}}{{x}}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} {sinxdx}=−{A}_{{t}} \\ $$$$\frac{{dC}_{{t}} }{{dt}}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$−{dC}_{{t}} =\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$−{C}_{{t}} ={tan}^{−\mathrm{1}} \left({t}\right)+{k} \\ $$$${k}=−{C}_{{t}} −{tan}^{−\mathrm{1}} \left({t}\right) \\ $$$${when}\:{t}\rightarrow\infty\:\:{C}_{{t}} \rightarrow\mathrm{0}\:\:{and}\:{tan}^{−\mathrm{1}} \left({t}\right)\rightarrow\frac{\pi}{\mathrm{2}} \\ $$$${so}\:{k}=−\frac{\pi}{\mathrm{2}} \\ $$$$−{C}_{{t}} ={tan}^{−\mathrm{1}} \left({t}\right)−\frac{\pi}{\mathrm{2}} \\ $$$${we}\:{have}\:{to}\:{find}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx} \\ $$$${we}\:{know}\:{that} \\ $$$$−\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}} \frac{{sinx}}{{x}}{dx}={tan}^{−\mathrm{1}} \left({t}\right)−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$${now}\:{put}\:{t}=\mathrm{0}\:{botb}\:{side} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}={tan}^{−\mathrm{1}} \left(\mathrm{0}\right)−\frac{\pi}{\mathrm{2}} \\ $$$${so}\:\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}=\frac{\pi}{\mathrm{2}}\:\:{proved} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *