Menu Close

1-calculate-dx-2-x-1-2-2-find-the-value-of-2-dx-2-x-1-2-




Question Number 94907 by mathmax by abdo last updated on 21/May/20
1)calculate ∫  (dx/((2+(√(x−1)))^2 ))  2) find the value of  ∫_2 ^(+∞)    (dx/((2+(√(x−1)))^2 ))
1)calculatedx(2+x1)22)findthevalueof2+dx(2+x1)2
Answered by MJS last updated on 22/May/20
∫(dx/((2+(√(x−1)))^2 ))=       [t=2+(√(x−1)) → dx=2(√(x−1))dt]  =2∫((t−2)/t^2 )dt=(4/t)+2ln t =  =(4/(2+(√(x−1))))+2ln (2+(√(x−1))) +C  ∫_2 ^∞ (dx/((2+(√(x−1)))^2 )) diverges
dx(2+x1)2=[t=2+x1dx=2x1dt]=2t2t2dt=4t+2lnt==42+x1+2ln(2+x1)+C2dx(2+x1)2diverges
Commented by mathmax by abdo last updated on 22/May/20
thank you sir mjs
thankyousirmjs
Answered by mathmax by abdo last updated on 22/May/20
1) I =∫  (dx/((2+(√(x−1)))^2 ))  changement (√(x−1))=t give x−1=t^2  ⇒  I =∫ ((2tdt)/((2+t)^2 )) = ∫  ((2tdt)/(t^2  +4t +4)) =∫  ((2t+4−4)/(t^2  +4t +4))dt=∫((2t+4)/(t^2  +4t+4))dt  −4∫ (dt/(t^2  +4t +4)) =ln(t^2  +4t+4)−4 ∫ (dt/((t+2)^2 ))  =2ln∣t+2∣+(4/(t+2)) +C  =2ln∣(√(x−1))+2∣+(4/( (√(x−1))+2)) +C  2) ∫_2 ^(+∞)  (dx/((2+(√(x−1)))^2 )) =[2ln∣(√(x−1))+2∣ +(4/( (√(x−1))+2))]_2 ^(+∞)  =+∞  so this integrale is divergente .!
1)I=dx(2+x1)2changementx1=tgivex1=t2I=2tdt(2+t)2=2tdtt2+4t+4=2t+44t2+4t+4dt=2t+4t2+4t+4dt4dtt2+4t+4=ln(t2+4t+4)4dt(t+2)2=2lnt+2+4t+2+C=2lnx1+2+4x1+2+C2)2+dx(2+x1)2=[2lnx1+2+4x1+2]2+=+sothisintegraleisdivergente.!

Leave a Reply

Your email address will not be published. Required fields are marked *