Menu Close

1-calculate-dx-x-1-3-x-2-3-2-decompose-the-fraction-F-x-1-x-1-3-x-2-3-




Question Number 86983 by mathmax by abdo last updated on 01/Apr/20
1) calculate ∫  (dx/((x+1)^3 (x−2)^3 ))  2) decompose the fraction F(x)=(1/((x+1)^3 (x−2)^3 ))
1)calculatedx(x+1)3(x2)32)decomposethefractionF(x)=1(x+1)3(x2)3
Commented by hknkrc46 last updated on 01/Apr/20
(1/((x+1)^3 (x−2)^3 )) =(1/(27))∙(([(x+1)−(x−2)]^3 )/((x+1)^3 (x−2)^3 ))  =(1/(27))[(((x+1)^3 −(x−2)^3 −3(x+1)(x−2)[(x+1)−(x−2)])/((x+1)^3 (x−2)^3 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(9/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(([(x+1)−(x−2)]^2 )/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(((x+1)^2 +(x−2)^2 −2(x+1)(x−2))/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/((x+1)(x−2)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/3)∙(((x+1)−(x−2))/((x+1)(x−2)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/3)∙((1/(x−2))−(1/(x+1)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))]+(2/(81))∙((1/(x−2))−(1/(x+1)))  ∫  (dx/((x+1)^3 (x−2)^3 ))=(1/(27))[(((x−2)^(−2) )/(−2))+(((x+1)^(−2) )/2)+(x−2)^(−1) +(x+1)^(−1) ]+(2/(81))ln(((x−2)/(x+1)))+c
1(x+1)3(x2)3=127[(x+1)(x2)]3(x+1)3(x2)3=127[(x+1)3(x2)33(x+1)(x2)[(x+1)(x2)](x+1)3(x2)3]=127[1(x2)31(x+1)39(x+1)2(x2)2]=127[1(x2)31(x+1)3[(x+1)(x2)]2(x+1)2(x2)2]=127[1(x2)31(x+1)3(x+1)2+(x2)22(x+1)(x2)(x+1)2(x2)2]=127[1(x2)31(x+1)31(x2)21(x+1)2+2(x+1)(x2)]=127[1(x2)31(x+1)31(x2)21(x+1)2+23(x+1)(x2)(x+1)(x2)]=127[1(x2)31(x+1)31(x2)21(x+1)2+23(1x21x+1)]=127[1(x2)31(x+1)31(x2)21(x+1)2]+281(1x21x+1)dx(x+1)3(x2)3=127[(x2)22+(x+1)22+(x2)1+(x+1)1]+281ln(x2x+1)+c
Commented by mathmax by abdo last updated on 01/Apr/20
thank you sir its a eazy way...
thankyousiritsaeazyway
Commented by mathmax by abdo last updated on 01/Apr/20
1) I =∫  (dx/((x+1)^3 (x−2)^3 )) ⇒ I =∫   (dx/((((x+1)/(x−2)))^3 (x−2)^6 )) changement  ((x+1)/(x−2)) =t give x+1 =tx−2t ⇒(1−t)x =−1−2t ⇒x =((2t+1)/(t−1)) ⇒  (dx/dt) =((2(t−1)−(2t+1))/((t−1)^2 )) =((−3)/((t−1)^2 )) also x−2 =((2t+1)/(t−1))−2=((2t+1−2t+2)/(t−1))  =(3/(t−1)) ⇒ I = ∫  ((−3dt)/((t−1)^2 t^3 ((3/(t−1)))^6 )) =−(1/3^5 ) ∫  (((t−1)^4  dt)/t^3 )  =−(1/3^5 )∫  ((Σ_(k=0) ^4  C_4 ^k  t^k (−1)^(4−k) )/t^3 )dt =−(1/3^5 ) Σ_(k=0) ^4  (−1)^k  C_4 ^k ∫ t^(k−3)  dt  =−(1/3^5 )Σ_(k=0 and k≠2) ^4  (−1)^k  C_4 ^k  (1/(k−2))t^(k−2)    −(1/3^5 ) C_4 ^2  ln∣t∣ +C  =−(1/3^5 ) Σ_(k=0 and k≠2) ^4  (((−1)^k  C_4 ^k )/(k−2)) (((x+1)/(x−2)))^(k−2)  −(1/3^5 ) C_4 ^2  ln∣((x+1)/(x−2))∣ +C  −3^5 I =(C_4 ^0 /(−2))(((x+1)/(x−2)))^(−2) +(C_4 ^1 /1)(((x+1)/(x−2)))^(−1) −C_4 ^3  (((x+1)/(x−2))) +(C_4 ^4 /2)(((x+1)/(x−2)))^2   + C_4 ^2 ln∣((x+1)/(x−2))∣ +C
1)I=dx(x+1)3(x2)3I=dx(x+1x2)3(x2)6changementx+1x2=tgivex+1=tx2t(1t)x=12tx=2t+1t1dxdt=2(t1)(2t+1)(t1)2=3(t1)2alsox2=2t+1t12=2t+12t+2t1=3t1I=3dt(t1)2t3(3t1)6=135(t1)4dtt3=135k=04C4ktk(1)4kt3dt=135k=04(1)kC4ktk3dt=135k=0andk24(1)kC4k1k2tk2135C42lnt+C=135k=0andk24(1)kC4kk2(x+1x2)k2135C42lnx+1x2+C35I=C402(x+1x2)2+C411(x+1x2)1C43(x+1x2)+C442(x+1x2)2+C42lnx+1x2+C
Commented by mathmax by abdo last updated on 01/Apr/20
2) ∫ F(x)dx is known we use F(x) =(d/dx)(∫ F(x)dx)
2)F(x)dxisknownweuseF(x)=ddx(F(x)dx)
Answered by mind is power last updated on 02/Apr/20
F(a,b)∫(dx/((x+a)(x+b)))=(1/(b−a))ln(((x+a)/(x+b)))+c  ∫(dx/((x+1)^3 (x−2)^3 ))=(∂^3 F/(4∂^2 a.∂^2 b))∣_(a=1,b.−2)
F(a,b)dx(x+a)(x+b)=1baln(x+ax+b)+cdx(x+1)3(x2)3=3F42a.2ba=1,b.2

Leave a Reply

Your email address will not be published. Required fields are marked *