1-calculate-dx-x-a-with-a-C-2-find-the-values-of-0-dx-x-4-1-and-0-dx-x-6-1-by-using-the-decomposition-inside-C-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65293 by mathmax by abdo last updated on 27/Jul/19 1)calculate∫−∞+∞dxx−awitha∈C2)findthevaluesof∫0∞dxx4+1and∫0∞dxx6+1byusingthedecompositioninsideC(x). Commented by mathmax by abdo last updated on 01/Aug/19 1)letI(ξ)=∫−ξξdxx−aleta=α+iβwehave∫−∞+∞dxx−a=limξ→+∞I(ξ)I(ξ)=∫−ξξdxx−α−iβ=∫−ξξx−α+iβ(x−α)2+β2dx=12[ln{(x−α)2+β2}]−ξξ+iβ∫−ξξdx(x−α)2+β2=12ln((ξ−α)2+β2(ξ+α)2)+β2)+iβ∫−ξξdx(x−α)2+β2cha7gementx−α=∣β∣ugive∫−ξξdx(x−α)2+β2=∫−ξ−α∣β∣ξ−α∣β∣∣β∣duβ2(1+u2)=1∣β∣{arctan(ξ−α∣β∣)+arctan(ξ+α∣β∣)}case1β>0⇒limξ→+∞I(ξ)=iβ1β(π2+π2)=iπcase2β<0⇒limξ→+∞I(ξ)=−iβ1β(π2+π2)=−iπ. Commented by mathmax by abdo last updated on 01/Aug/19 finally∫−∞+∞dxx−a=iπifim(a)>0and−iπifim(a)<0 Commented by mathmax by abdo last updated on 01/Aug/19 2)letdecomposeF(x)=1x4+1x4+1=0⇒x4=−1⇒(reiθ)4=ei(2k+1)π⇒r=1andθ=(2k+1)π4sotherootsarezk=ei(2k+1)π4k∈[[0,3]]z0=eiπ4,z1=ei3π4,z2=ei(5π4),z3=ei(7π4)F(x)=∑i=03λix−ziandλi=14zi3=−14zi⇒∫0+∞dxx4+1=12∫−∞+∞F(x)dx=12∫−∞+∞∑i=03(−14)zix−zidx=−18∑i=03∫−∞+∞zix−zidx=−18{z0∫−∞+∞dxx−z0+z1∫−∞+∞dxx−z1+z2∫−∞+∞dxx−z2+z3∫−∞+∞dxx−z3}=−18{iπ(z0)+iπz1−iπz2−iπz3}=−iπ8{z0+z1−(z2+z3)}butz0+z1=eiπ4+ei(π−π4)=eiπ4−e−iπ4=2isin(π4)=2i22=i2z2+z3=ei5π4+ei7π4=ei(π+π4)+ei(2π−π4)=−eiπ4+e−iπ4=−(eiπ4−e−iπ4)=−2isin(π4)=−2i22=−i2⇒∫0∞dx1+x4=−iπ8{i2+i2}=π8(22)=π24 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-1-2-D-2-x-1-D-1-y-4cos-ln-x-1-Next Next post: x-2-y-xy-y-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.