Question Number 65293 by mathmax by abdo last updated on 27/Jul/19
$$\left.\mathrm{1}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}−{a}}\:\:{with}\:{a}\:\in{C} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:\:{and}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{6}} \:+\mathrm{1}} \\ $$$${by}\:{using}\:{the}\:{decomposition}\:{inside}\:{C}\left({x}\right). \\ $$
Commented by mathmax by abdo last updated on 01/Aug/19
$$\left.\mathrm{1}\right)\:{let}\:{I}\left(\xi\right)\:=\int_{−\xi} ^{\xi} \:\:\frac{{dx}}{{x}−{a}}\:\:{let}\:{a}\:=\alpha+{i}\beta\:\:\:{we}\:{have}\:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}−{a}}\:={lim}_{\xi\rightarrow+\infty} {I}\left(\xi\right) \\ $$$${I}\left(\xi\right)\:=\int_{−\xi} ^{\xi} \:\:\frac{{dx}}{{x}−\alpha−{i}\beta}\:=\int_{−\xi} ^{\xi} \:\frac{{x}−\alpha+{i}\beta}{\left({x}−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left\{\left({x}−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right\}\right]_{−\xi} ^{\xi} \:+{i}\beta\:\int_{−\xi} ^{\xi} \:\:\frac{{dx}}{\left({x}−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\left(\xi−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} }{\left.\left(\xi+\alpha\right)^{\mathrm{2}} \:\right)+\beta^{\mathrm{2}} }\right)\:+{i}\beta\:\int_{−\xi} ^{\xi} \:\frac{{dx}}{\left({x}−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} } \\ $$$${cha}\mathrm{7}{gement}\:{x}−\alpha\:=\mid\beta\mid{u}\:{give}\:\:\int_{−\xi} ^{\xi} \:\:\frac{{dx}}{\left({x}−\alpha\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} } \\ $$$$=\:\int_{\frac{−\xi−\alpha}{\mid\beta\mid}} ^{\frac{\xi−\alpha}{\mid\beta\mid}} \:\:\:\:\:\:\frac{\mid\beta\mid{du}}{\beta^{\mathrm{2}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\mid\beta\mid}\left\{\:{arctan}\left(\frac{\xi−\alpha}{\mid\beta\mid}\right)+{arctan}\left(\frac{\xi+\alpha}{\mid\beta\mid}\right)\right\} \\ $$$${case}\:\mathrm{1}\:\:\beta>\mathrm{0}\:\Rightarrow{lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:={i}\beta\frac{\mathrm{1}}{\beta}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right)={i}\pi \\ $$$${case}\:\mathrm{2}\:\:\beta<\mathrm{0}\:\:\Rightarrow{lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:=−{i}\beta\frac{\mathrm{1}}{\beta}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right)=−{i}\pi\:. \\ $$
Commented by mathmax by abdo last updated on 01/Aug/19
$${finally}\:\:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}−{a}}\:={i}\pi\:{if}\:{im}\left({a}\right)>\mathrm{0}\:\:{and}\:−{i}\pi\:{if}\:{im}\left({a}\right)<\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 01/Aug/19
$$\left.\mathrm{2}\right)\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$$${x}^{\mathrm{4}} +\mathrm{1}\:=\mathrm{0}\:\Rightarrow{x}^{\mathrm{4}} =−\mathrm{1}\:\Rightarrow\left({re}^{{i}\theta} \right)^{\mathrm{4}} \:={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow{r}\:=\mathrm{1}\:{and}\:\theta\:=\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}} \\ $$$${so}\:{the}\:{roots}\:{are}\:{z}_{{k}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}} \:\:\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right] \\ $$$${z}_{\mathrm{0}} ={e}^{\frac{{i}\pi}{\mathrm{4}}} \:,\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:,{z}_{\mathrm{2}} ={e}^{{i}\left(\frac{\mathrm{5}\pi}{\mathrm{4}}\right)} \:\:,{z}_{\mathrm{3}} ={e}^{{i}\left(\frac{\mathrm{7}\pi}{\mathrm{4}}\right)} \\ $$$${F}\left({x}\right)\:=\sum_{{i}=\mathrm{0}} ^{\mathrm{3}} \:\frac{\lambda_{{i}} }{{x}−{z}_{{i}} }\:\:\:\:\:{and}\:\:\lambda_{{i}} =\frac{\mathrm{1}}{\mathrm{4}{z}_{{i}} ^{\mathrm{3}} }\:=−\frac{\mathrm{1}}{\mathrm{4}}{z}_{{i}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:{F}\left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \sum_{{i}=\mathrm{0}} ^{\mathrm{3}} \:\:\left(−\frac{\mathrm{1}}{\mathrm{4}}\right)\frac{{z}_{{i}} }{{x}−{z}_{{i}} }{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\:\sum_{{i}=\mathrm{0}} ^{\mathrm{3}} \:\:\int_{−\infty} ^{+\infty} \:\:\frac{{z}_{{i}} }{{x}−{z}_{{i}} }{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\left\{\:\:{z}_{\mathrm{0}} \:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}−{z}_{\mathrm{0}} }\:+{z}_{\mathrm{1}} \int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}−{z}_{\mathrm{1}} }\:+{z}_{\mathrm{2}} \:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}−{z}_{\mathrm{2}} }\:+{z}_{\mathrm{3}} \int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}−{z}_{\mathrm{3}} }\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\left\{\:{i}\pi\left({z}_{\mathrm{0}} \right)+{i}\pi\:{z}_{\mathrm{1}} −{i}\pi{z}_{\mathrm{2}} −{i}\pi{z}_{\mathrm{3}} \right\} \\ $$$$=−\frac{{i}\pi}{\mathrm{8}}\left\{\:{z}_{\mathrm{0}} +{z}_{\mathrm{1}} −\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)\right\}\:\:{but}\:\:{z}_{\mathrm{0}} \:+{z}_{\mathrm{1}} ={e}^{\frac{{i}\pi}{\mathrm{4}}} \:+{e}^{{i}\left(\pi−\frac{\pi}{\mathrm{4}}\right)} \\ $$$$={e}^{\frac{{i}\pi}{\mathrm{4}}} −{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:=\mathrm{2}{i}\:{sin}\left(\frac{\pi}{\mathrm{4}}\right)\:=\mathrm{2}{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:={i}\sqrt{\mathrm{2}} \\ $$$${z}_{\mathrm{2}} \:+{z}_{\mathrm{3}} ={e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{4}}} \:+{e}^{\frac{{i}\mathrm{7}\pi}{\mathrm{4}}} \:={e}^{{i}\left(\pi+\frac{\pi}{\mathrm{4}}\right)} \:+{e}^{{i}\left(\mathrm{2}\pi−\frac{\pi}{\mathrm{4}}\right)} =−{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$=−\left({e}^{\frac{{i}\pi}{\mathrm{4}}} −{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{4}}\right)\:=−\mathrm{2}{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=−{i}\sqrt{\mathrm{2}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:=−\frac{{i}\pi}{\mathrm{8}}\left\{{i}\sqrt{\mathrm{2}}+{i}\sqrt{\mathrm{2}}\right\}\:=\frac{\pi}{\mathrm{8}}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$ \\ $$