Menu Close

1-calculate-dx-x-a-with-a-C-2-find-the-values-of-0-dx-x-4-1-and-0-dx-x-6-1-by-using-the-decomposition-inside-C-x-




Question Number 65293 by mathmax by abdo last updated on 27/Jul/19
1) calculate ∫_(−∞) ^(+∞)   (dx/(x−a))  with a ∈C  2) find the values of  ∫_0 ^∞     (dx/(x^4  +1))  and  ∫_0 ^∞   (dx/(x^6  +1))  by using the decomposition inside C(x).
1)calculate+dxxawithaC2)findthevaluesof0dxx4+1and0dxx6+1byusingthedecompositioninsideC(x).
Commented by mathmax by abdo last updated on 01/Aug/19
1) let I(ξ) =∫_(−ξ) ^ξ   (dx/(x−a))  let a =α+iβ   we have ∫_(−∞) ^(+∞)  (dx/(x−a)) =lim_(ξ→+∞) I(ξ)  I(ξ) =∫_(−ξ) ^ξ   (dx/(x−α−iβ)) =∫_(−ξ) ^ξ  ((x−α+iβ)/((x−α)^2  +β^2 ))dx  =(1/2)[ln{(x−α)^2  +β^2 }]_(−ξ) ^ξ  +iβ ∫_(−ξ) ^ξ   (dx/((x−α)^2  +β^2 ))  =(1/2)ln((((ξ−α)^2  +β^2 )/((ξ+α)^2  )+β^2 ))) +iβ ∫_(−ξ) ^ξ  (dx/((x−α)^2  +β^2 ))  cha7gement x−α =∣β∣u give  ∫_(−ξ) ^ξ   (dx/((x−α)^2  +β^2 ))  = ∫_((−ξ−α)/(∣β∣)) ^((ξ−α)/(∣β∣))       ((∣β∣du)/(β^2 (1+u^2 ))) =(1/(∣β∣)){ arctan(((ξ−α)/(∣β∣)))+arctan(((ξ+α)/(∣β∣)))}  case 1  β>0 ⇒lim_(ξ→+∞)  I(ξ) =iβ(1/β)((π/2)+(π/2))=iπ  case 2  β<0  ⇒lim_(ξ→+∞)  I(ξ) =−iβ(1/β)((π/2)+(π/2))=−iπ .
1)letI(ξ)=ξξdxxaleta=α+iβwehave+dxxa=limξ+I(ξ)I(ξ)=ξξdxxαiβ=ξξxα+iβ(xα)2+β2dx=12[ln{(xα)2+β2}]ξξ+iβξξdx(xα)2+β2=12ln((ξα)2+β2(ξ+α)2)+β2)+iβξξdx(xα)2+β2cha7gementxα=∣βugiveξξdx(xα)2+β2=ξαβξαββduβ2(1+u2)=1β{arctan(ξαβ)+arctan(ξ+αβ)}case1β>0limξ+I(ξ)=iβ1β(π2+π2)=iπcase2β<0limξ+I(ξ)=iβ1β(π2+π2)=iπ.
Commented by mathmax by abdo last updated on 01/Aug/19
finally  ∫_(−∞) ^(+∞)  (dx/(x−a)) =iπ if im(a)>0  and −iπ if im(a)<0
finally+dxxa=iπifim(a)>0andiπifim(a)<0
Commented by mathmax by abdo last updated on 01/Aug/19
2) let decompose F(x)=(1/(x^4  +1))  x^4 +1 =0 ⇒x^4 =−1 ⇒(re^(iθ) )^4  =e^(i(2k+1)π)  ⇒r =1 and θ =(2k+1)(π/4)  so the roots are z_k =e^(i(2k+1)(π/4))    k∈[[0,3]]  z_0 =e^((iπ)/4)  , z_1 =e^(i((3π)/4))   ,z_2 =e^(i(((5π)/4)))   ,z_3 =e^(i(((7π)/4)))   F(x) =Σ_(i=0) ^3  (λ_i /(x−z_i ))     and  λ_i =(1/(4z_i ^3 )) =−(1/4)z_i  ⇒  ∫_0 ^(+∞)  (dx/(x^4  +1)) =(1/2)∫_(−∞) ^(+∞)  F(x)dx =(1/2)∫_(−∞) ^(+∞) Σ_(i=0) ^3   (−(1/4))(z_i /(x−z_i ))dx  =−(1/8) Σ_(i=0) ^3   ∫_(−∞) ^(+∞)   (z_i /(x−z_i ))dx  =−(1/8){  z_0  ∫_(−∞) ^(+∞)   (dx/(x−z_0 )) +z_1 ∫_(−∞) ^(+∞)  (dx/(x−z_1 )) +z_2  ∫_(−∞) ^(+∞)  (dx/(x−z_2 )) +z_3 ∫_(−∞) ^(+∞)  (dx/(x−z_3 ))}  =−(1/8){ iπ(z_0 )+iπ z_1 −iπz_2 −iπz_3 }  =−((iπ)/8){ z_0 +z_1 −(z_2 +z_3 )}  but  z_0  +z_1 =e^((iπ)/4)  +e^(i(π−(π/4)))   =e^((iπ)/4) −e^(−((iπ)/4))  =2i sin((π/4)) =2i((√2)/2) =i(√2)  z_2  +z_3 =e^(i((5π)/4))  +e^((i7π)/4)  =e^(i(π+(π/4)))  +e^(i(2π−(π/4))) =−e^((iπ)/4)   +e^(−((iπ)/4))   =−(e^((iπ)/4) −e^(−((iπ)/4)) ) =−2isin((π/4)) =−2i((√2)/2) =−i(√2) ⇒  ∫_0 ^∞    (dx/(1+x^4 )) =−((iπ)/8){i(√2)+i(√2)} =(π/8)(2(√2)) =((π(√2))/4)
2)letdecomposeF(x)=1x4+1x4+1=0x4=1(reiθ)4=ei(2k+1)πr=1andθ=(2k+1)π4sotherootsarezk=ei(2k+1)π4k[[0,3]]z0=eiπ4,z1=ei3π4,z2=ei(5π4),z3=ei(7π4)F(x)=i=03λixziandλi=14zi3=14zi0+dxx4+1=12+F(x)dx=12+i=03(14)zixzidx=18i=03+zixzidx=18{z0+dxxz0+z1+dxxz1+z2+dxxz2+z3+dxxz3}=18{iπ(z0)+iπz1iπz2iπz3}=iπ8{z0+z1(z2+z3)}butz0+z1=eiπ4+ei(ππ4)=eiπ4eiπ4=2isin(π4)=2i22=i2z2+z3=ei5π4+ei7π4=ei(π+π4)+ei(2ππ4)=eiπ4+eiπ4=(eiπ4eiπ4)=2isin(π4)=2i22=i20dx1+x4=iπ8{i2+i2}=π8(22)=π24

Leave a Reply

Your email address will not be published. Required fields are marked *