Menu Close

1-calculate-f-0-1-t-2-2sin-t-1-dt-with-0-pi-2-2-calculate-g-t-0-1-t-2-2-sin-t-1-d-3-find-also-h-0-1-t-t-2-2-sin-t-1-dt-




Question Number 57666 by maxmathsup by imad last updated on 09/Apr/19
1) calculate f(θ) =∫_0 ^1 (√(t^2  +2sinθt +1))dt    with 0≤θ≤(π/2)  2) calculate g(t) =∫_0 ^1 (√(t^2  +2(sinθ)t +1))dθ  3) find also h(θ) =∫_0 ^1     (t/( (√(t^2  +2(sinθ)t +1))))dt
1)calculatef(θ)=01t2+2sinθt+1dtwith0θπ22)calculateg(t)=01t2+2(sinθ)t+1dθ3)findalsoh(θ)=01tt2+2(sinθ)t+1dt
Commented by kaivan.ahmadi last updated on 10/Apr/19
thank sir, it was fals
thanksir,itwasfals
Commented by kaivan.ahmadi last updated on 10/Apr/19
but its equal to  (t+sinθ)^2 +1−sin^2 θ=(t+sinθ)^2 +cos^2 θ
butitsequalto(t+sinθ)2+1sin2θ=(t+sinθ)2+cos2θ
Commented by maxmathsup by imad last updated on 10/Apr/19
1)  we have f(θ) =∫_0 ^1 (√(t^2  +2sinθ t +sin^2 θ +cos^2 ))dt  =∫_0 ^1 (√((t+sinθ)^2  +cos^2 θ))dt changement t +sinθ  =cosθ u give  f(θ) = ∫_(tanθ) ^((1+sinθ)/(cosθ))   cosθ (√(1+u^2 ))cosθ du =cos^2 θ ∫_(tanθ) ^((1+sinθ)/(cosθ))   (√(1+u^2 ))du  let find  I =∫ (√(1+u^2 ))dy   chang.u =shα give I =∫ chαch(α)dα=∫((1+ch(2α))/2)dα  =(1/2)α +(1/4)sh(2α) +c =(α/2) +(1/2)sh(α)ch(α) +c =((argsh(u))/2) +(1/2) u(√(1+u^2 ))  =(1/2)ln(u+(√(1+u^2 ))) +(u/2)(√(1+u^2 )) +c ⇒  f(θ) =((cos^2 (θ))/2)[ln(u+(√(1+u^2 )))+u(√(1+u^2 ))]_(tanθ) ^((1+sinθ)/(cosθ))   =(1/2) cos^2 θ{ ln(((1+sinθ)/(cosθ)) +(√(1+(((1+cosθ)/(sinθ)))^2 )))+((1+sinθ)/(cosθ))(√(1+(((1+sinθ)/(cosθ)))^2 ))  −ln(tanθ +(√(1+tan^2 θ))) −tanθ (√(1+tan^2 θ))} .
1)wehavef(θ)=01t2+2sinθt+sin2θ+cos2dt=01(t+sinθ)2+cos2θdtchangementt+sinθ=cosθugivef(θ)=tanθ1+sinθcosθcosθ1+u2cosθdu=cos2θtanθ1+sinθcosθ1+u2duletfindI=1+u2dychang.u=shαgiveI=chαch(α)dα=1+ch(2α)2dα=12α+14sh(2α)+c=α2+12sh(α)ch(α)+c=argsh(u)2+12u1+u2=12ln(u+1+u2)+u21+u2+cf(θ)=cos2(θ)2[ln(u+1+u2)+u1+u2]tanθ1+sinθcosθ=12cos2θ{ln(1+sinθcosθ+1+(1+cosθsinθ)2)+1+sinθcosθ1+(1+sinθcosθ)2ln(tanθ+1+tan2θ)tanθ1+tan2θ}.

Leave a Reply

Your email address will not be published. Required fields are marked *