Menu Close

1-calculate-f-a-0-a-2x-1-x-2-x-3-x-2-1-dx-1-calculate-f-1-and-f-2-




Question Number 57225 by maxmathsup by imad last updated on 31/Mar/19
1)calculate f(a) =∫_0 ^a    ((2x−1)/((x^2  −x+3)(x^2  +1)))dx  1) calculate f(1)and f(2)
1)calculatef(a)=0a2x1(x2x+3)(x2+1)dx1)calculatef(1)andf(2)
Commented by maxmathsup by imad last updated on 04/Apr/19
let decompose F(x) =((2x−1)/((x^2 −x+3)(x^2  +1))) ⇒  F(x) =((ax+b)/(x^2 −x+3)) +((cx+d)/(x^2  +1)) ⇒(ax+b)(x^2  +1)+(cx+d)(x^2 −x+3) =2x−1 ⇒  ax^3  +ax +bx^2  +b +cx^3  −cx^2  +3cx +dx^2  −dx +3d =2x−1 ⇒  (a+c)x^3  +(b−c +d)x^2  +(a +3c−d)x +b +3d =2x−1 ⇒  a+c =0 and b−c+d =0 and a+3c−d =2 and 3d=−1 ⇒ d =−(1/3)  c=−a ⇒a−3a −d =2 ⇒−2a =d+2 =−(1/3) +2 =(5/3) ⇒a =−(5/6)  c =(5/6)  ,b =c−d =(5/6) +(1/3) =(7/6) ⇒  F(x) =((−(5/6)x +(7/6))/(x^2 −x+3)) +(((5/6)x−(2/6))/(x^2  +1)) =−(1/6) ((x−7)/(x^2 −x+3)) +(1/6) ((5x−2)/(x^2  +1)) ⇒  ∫ F(x)dx =−(1/(12)) ∫ ((2x−14)/(x^2 −x +3))dx  +(5/(12)) ∫ ((2x)/(x^2  +1)) −(1/3) ∫ (dx/(x^2  +1))  =−(1/(12))ln(x^2 −x +3) +((13)/(12)) ∫   (dx/(x^2 −x +3)) +(5/(12))ln(x^2  +1)−(1/3) arctan(x) +c  but ∫    (dx/(x^2 −x+3)) =∫   (dx/(x^2 −2(x/2) +(1/4)+3−(1/4))) =∫   (dx/((x−(1/2))^2  +((11)/4)))  =_(x−(1/2)=((√(11))/2)u)    (4/(11))∫  (1/(1+u^2 )) ((√(11))/2) du =(2/( (√(11)))) arctan(((2x−1)/( (√(11))))) ⇒  ∫ F(x)dx =−(1/(12))ln(x^2 −x+3) +((13)/(6(√(11)))) arctan(((2x−1)/( (√(11))))) +(5/(12))ln(x^2  +1)−(1/3)arctan(x)+c   ⇒f(a) =∫_0 ^a  F(x)dx =[−(1/(12))ln(x^2 −x+3)+((13)/(6(√(11)))) arctan(((2x−1)/( (√(11)))))+(5/(12))ln(x^2  +1)−(1/3) arctan(x)]_0 ^a   =−(1/(12))ln(a^2 −a +3)+((13)/(6(√(11)))) arctan(((2a−1)/( (√(11)))))+(5/(12))ln(a^2  +1)−(1/3) arctan(a)  +(1/(12))ln(3) +((13)/(6(√(11)))) arctan((1/( (√(11)))))
letdecomposeF(x)=2x1(x2x+3)(x2+1)F(x)=ax+bx2x+3+cx+dx2+1(ax+b)(x2+1)+(cx+d)(x2x+3)=2x1ax3+ax+bx2+b+cx3cx2+3cx+dx2dx+3d=2x1(a+c)x3+(bc+d)x2+(a+3cd)x+b+3d=2x1a+c=0andbc+d=0anda+3cd=2and3d=1d=13c=aa3ad=22a=d+2=13+2=53a=56c=56,b=cd=56+13=76F(x)=56x+76x2x+3+56x26x2+1=16x7x2x+3+165x2x2+1F(x)dx=1122x14x2x+3dx+5122xx2+113dxx2+1=112ln(x2x+3)+1312dxx2x+3+512ln(x2+1)13arctan(x)+cbutdxx2x+3=dxx22x2+14+314=dx(x12)2+114=x12=112u41111+u2112du=211arctan(2x111)F(x)dx=112ln(x2x+3)+13611arctan(2x111)+512ln(x2+1)13arctan(x)+cf(a)=0aF(x)dx=[112ln(x2x+3)+13611arctan(2x111)+512ln(x2+1)13arctan(x)]0a=112ln(a2a+3)+13611arctan(2a111)+512ln(a2+1)13arctan(a)+112ln(3)+13611arctan(111)
Commented by maxmathsup by imad last updated on 05/Apr/19
2) f(1) =−(1/(12))ln(3)+((13)/(6(√(11)))) arctan((1/( (√(11))))) +(5/(12))ln(2)−(π/(12)) +(1/(12))ln(3)+((13)/(6(√(11)))) arctan((1/( (√(11)))))  f(1) =((13)/(3(√(11)))) arctan((1/( (√(11))))) +(5/(12))ln(2)−(π/(12)) .
2)f(1)=112ln(3)+13611arctan(111)+512ln(2)π12+112ln(3)+13611arctan(111)f(1)=13311arctan(111)+512ln(2)π12.

Leave a Reply

Your email address will not be published. Required fields are marked *