1-calculate-f-a-0-a-2x-1-x-2-x-3-x-2-1-dx-1-calculate-f-1-and-f-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 57225 by maxmathsup by imad last updated on 31/Mar/19 1)calculatef(a)=∫0a2x−1(x2−x+3)(x2+1)dx1)calculatef(1)andf(2) Commented by maxmathsup by imad last updated on 04/Apr/19 letdecomposeF(x)=2x−1(x2−x+3)(x2+1)⇒F(x)=ax+bx2−x+3+cx+dx2+1⇒(ax+b)(x2+1)+(cx+d)(x2−x+3)=2x−1⇒ax3+ax+bx2+b+cx3−cx2+3cx+dx2−dx+3d=2x−1⇒(a+c)x3+(b−c+d)x2+(a+3c−d)x+b+3d=2x−1⇒a+c=0andb−c+d=0anda+3c−d=2and3d=−1⇒d=−13c=−a⇒a−3a−d=2⇒−2a=d+2=−13+2=53⇒a=−56c=56,b=c−d=56+13=76⇒F(x)=−56x+76x2−x+3+56x−26x2+1=−16x−7x2−x+3+165x−2x2+1⇒∫F(x)dx=−112∫2x−14x2−x+3dx+512∫2xx2+1−13∫dxx2+1=−112ln(x2−x+3)+1312∫dxx2−x+3+512ln(x2+1)−13arctan(x)+cbut∫dxx2−x+3=∫dxx2−2x2+14+3−14=∫dx(x−12)2+114=x−12=112u411∫11+u2112du=211arctan(2x−111)⇒∫F(x)dx=−112ln(x2−x+3)+13611arctan(2x−111)+512ln(x2+1)−13arctan(x)+c⇒f(a)=∫0aF(x)dx=[−112ln(x2−x+3)+13611arctan(2x−111)+512ln(x2+1)−13arctan(x)]0a=−112ln(a2−a+3)+13611arctan(2a−111)+512ln(a2+1)−13arctan(a)+112ln(3)+13611arctan(111) Commented by maxmathsup by imad last updated on 05/Apr/19 2)f(1)=−112ln(3)+13611arctan(111)+512ln(2)−π12+112ln(3)+13611arctan(111)f(1)=13311arctan(111)+512ln(2)−π12. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-1-3t-2-5t-1-t-1-t-2-2t-3-dt-Next Next post: 3x-y-6-x-5y-12- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.