Menu Close

1-calculate-f-a-0-pi-dx-a-sin-2-x-cos-2-x-with-a-gt-0-2-find-the-value-of-g-a-0-pi-sin-2-x-a-sin-2-x-cos-2-x-2-dx-




Question Number 35226 by abdo mathsup 649 cc last updated on 16/May/18
1) calculate f(a) = ∫_0 ^π        (dx/(a sin^2 x  +cos^2 x))  with a>0  2) find the value of g(a) = ∫_0 ^π    ((sin^2 x)/((a sin^2 x +cos^2 x)^2 ))dx
1)calculatef(a)=0πdxasin2x+cos2xwitha>02)findthevalueofg(a)=0πsin2x(asin2x+cos2x)2dx
Commented by prof Abdo imad last updated on 19/May/18
1)we have f(a) = ∫_0 ^π      (dx/(a sin^2 x +cos^2 x))  = ∫_0 ^π      (dx/(a ((1−cos(2x))/2)+((1+cos(2x))/2)))  = 2 ∫_0 ^π       (dx/(a −a cos(2x) +1+cos(2x)))  =2 ∫_0 ^π         (dx/(a+1 +(1−a) cos(2x)))  =_(2x =t)   2 ∫_0 ^(2π)         (1/(1+a +(1−a)cost)) (dt/2)  = ∫_0 ^(2π)         (dt/(1+a +(1−a)cost))  changement  e^(it)  = z  give   I = ∫_(∣z∣=1)       (1/(1+a +(1−a) ((z+z^(−1) )/2))) (dz/(iz))  I = ∫_(∣z∣=1)    ((2dz)/(iz( 2+2a +(1−a)(z+z^(−1) )))  = ∫_(∣z∣=1)      ((−2idz)/(2(1+a)z  +(1−a)z^2   +1−a))  let consider ϕ(z) =  ((−2i)/((1−a)^ z^2   +2(1+a)z +1−a))  poles of ϕ ?
1)wehavef(a)=0πdxasin2x+cos2x=0πdxa1cos(2x)2+1+cos(2x)2=20πdxaacos(2x)+1+cos(2x)=20πdxa+1+(1a)cos(2x)=2x=t202π11+a+(1a)costdt2=02πdt1+a+(1a)costchangementeit=zgiveI=z∣=111+a+(1a)z+z12dzizI=z∣=12dziz(2+2a+(1a)(z+z1)=z∣=12idz2(1+a)z+(1a)z2+1aletconsiderφ(z)=2i(1a)z2+2(1+a)z+1apolesofφ?
Commented by prof Abdo imad last updated on 19/May/18
Δ^′    =(1+a)^2  −(1−a)^2 =1+2a +a^2  −1 +2a −a^2   =4a  ⇒z_1 =((−1−a +2(√a))/(1−a)) =((a−2(√a) +1)/(a−1))  = ((((√a) −1)^2 )/(((√a) −1)((√a) +1))) = (((√a) −1)/( (√a)  +1))  z_2  = ((−1−a −2(√a))/(1−a)) = ((((√a) +1)^2 )/(a−1)) =((((√a) +1)^2 )/(((√a) −1)((√a) +1)))  = (((√a) +1)/( (√a) −1))   ∣z_1 ∣ −1 = (((√a^ )−1)/( (√a)+1))−1= (((√a) −1 −(√a) −1)/( (√a) +1))  = ((−2)/( (√a) +1)) <0⇒ ∣z_1 ∣<1  ∣z_2 ∣ −1 =  (1/(∣z_1 ∣)) −1 = ((1−∣z_1 ∣)/(∣z_1 ∣)) >0 ⇒ ∣z_2 ∣>1(to  elominate from rrsidus)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ, z_1 )  Res(ϕ,z_1 ) =lim_(z→z_1 ) (z−z_1 )ϕ(z)  but ϕ(z) = ((−2i)/((1−a)(z−z_1 )(z−z_2 )))  Res(ϕ,z_1 )=  ((−2i)/((1−a)(z_1 −z_2 ))) = ((−2i)/((1−a)(z_1  −(1/z_1 ))))  =  ((−2i z_1 )/((1−a)(z_1 ^2  −1)))   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ  ((−2iz_1 )/((1−a)(z_1 ^2  −1)))  = ((4πz_1 )/((1−a)(z_1 ^2  −1)))
Δ=(1+a)2(1a)2=1+2a+a21+2aa2=4az1=1a+2a1a=a2a+1a1=(a1)2(a1)(a+1)=a1a+1z2=1a2a1a=(a+1)2a1=(a+1)2(a1)(a+1)=a+1a1z11=a1a+11=a1a1a+1=2a+1<0z1∣<1z21=1z11=1z1z1>0z2∣>1(toelominatefromrrsidus)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz1(zz1)φ(z)butφ(z)=2i(1a)(zz1)(zz2)Res(φ,z1)=2i(1a)(z1z2)=2i(1a)(z11z1)=2iz1(1a)(z121)+φ(z)dz=2iπ2iz1(1a)(z121)=4πz1(1a)(z121)
Commented by abdo mathsup 649 cc last updated on 20/May/18
∫_(−∞) ^(+∞)   ϕ(z)dz = ((4π)/(1−a))  ((((√a) −1)/( (√a) +1))/(((((√a)−1)^2 )/(((√a) +1)^2 )) −1))  = ((4π)/(1−a))  (((√a) −1)/( (√a) +1)) ((((√a) +1)^2 )/(((√a)−1)^2  −((√a) +1)^2 ))  = ((4π(a−1))/((1−a)( a −2(√a) +1 −a−2(√a) −1)))  = ((4π)/(4(√a))) = (π/( (√a)))  so  f(a) = (π/( (√a))) .
+φ(z)dz=4π1aa1a+1(a1)2(a+1)21=4π1aa1a+1(a+1)2(a1)2(a+1)2=4π(a1)(1a)(a2a+1a2a1)=4π4a=πasof(a)=πa.
Commented by abdo mathsup 649 cc last updated on 20/May/18
2) we have f^′ (a) = ∫_0 ^π    (∂/∂a){   (1/(asin^2 x +cos^2 x))}dx  = −∫_0 ^π     ((sin^2 x)/((a sin^2 x +cos^2 x)^2 ))dx =−g(a) ⇒  g(a) =−f^′ (a)  but   f(a)= (π/( (√a))) ⇒ f^′ (a)= −π ((((√a))^′ )/a)  =−π  (1/(2a(√a))) ⇒  g(a) = ((−π)/(2a(√a)))  .
2)wehavef(a)=0πa{1asin2x+cos2x}dx=0πsin2x(asin2x+cos2x)2dx=g(a)g(a)=f(a)butf(a)=πaf(a)=π(a)a=π12aag(a)=π2aa.

Leave a Reply

Your email address will not be published. Required fields are marked *