Menu Close

1-calculate-f-a-dx-x-2-ax-1-with-a-lt-2-2-calculate-g-a-x-x-2-ax-1-2-3-find-values-of-integrals-dx-x-2-2-x-1-and-




Question Number 54376 by Abdo msup. last updated on 02/Feb/19
1) calculate  f(a) =∫_(−∞) ^(+∞)    (dx/(x^2  +ax  +1))  with   ∣a∣<2  2) calculate g(a) =∫_(−∞) ^(+∞)  (x/((x^2  +ax+1)^2 ))  3)find values of integrals ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1))  and ∫_(−∞) ^(+∞)  (x/((x^2  +(√2)x +1)^2 ))  4) calculate A(θ) = ∫_(−∞) ^(+∞)    (dx/(x^2  +2cosθ +1))  θ is a given real.
1)calculatef(a)=+dxx2+ax+1witha∣<22)calculateg(a)=+x(x2+ax+1)23)findvaluesofintegrals+dxx2+2x+1and+x(x2+2x+1)24)calculateA(θ)=+dxx2+2cosθ+1θisagivenreal.
Commented by maxmathsup by imad last updated on 03/Feb/19
1) we have f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +ax +1))  ⇒f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +2x(a/2) +(a^2 /4)+1−(a^2 /4)))  =∫_(−∞) ^(+∞)     (dx/((x+(a/2))^2  +((4−a^2 )/4)))  =_(x+(a/2)=(1/2)(√(4−a^2 ))t)      ∫_(−∞) ^(+∞)    (1/(((4−a^2 )/4)(1+t^2 ))) (((√(4−a^2 ))dt)/2)  =2(1/( (√(4−a^2 )))) ∫_(−∞) ^(+∞)     (dt/(1+t^2 )) =((2π)/( (√(4−a^2 )))) ⇒f(a) =((2π)/( (√(4−a^2 )))) .  2)we have f^′ (a) =−∫_(−∞) ^(+∞)   ((xdx)/((x^2 +ax+1)^2 )) =−g(a) ⇒  g(a) =−f^′ (a) =−2π ((4−a^2 )^(−(1/2)) )^′ =−2π .(−(1/2))(−2a)(4−a^2 )^(−(3/2))   =−2πa (1/((4−a^2 )(√(4−a^2 )))) =((−2πa)/((4−a^2 )(√(4−a^2 ))))
1)wehavef(a)=+dxx2+ax+1f(a)=+dxx2+2xa2+a24+1a24=+dx(x+a2)2+4a24=x+a2=124a2t+14a24(1+t2)4a2dt2=214a2+dt1+t2=2π4a2f(a)=2π4a2.2)wehavef(a)=+xdx(x2+ax+1)2=g(a)g(a)=f(a)=2π((4a2)12)=2π.(12)(2a)(4a2)32=2πa1(4a2)4a2=2πa(4a2)4a2
Commented by maxmathsup by imad last updated on 03/Feb/19
3) ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1)) =f((√2)) =((2π)/( (√(4−2)))) =((2π)/( (√2))) =π(√2).  ∫_(−∞) ^(+∞)    ((xdx)/((x^2  +(√2)x +1)^2 )) =g((√2)) = ((−2π(√2))/(2(√2))) =−π .
3)+dxx2+2x+1=f(2)=2π42=2π2=π2.+xdx(x2+2x+1)2=g(2)=2π222=π.
Commented by maxmathsup by imad last updated on 03/Feb/19
4) ∫_(−∞) ^(+∞)   (dx/(x^2  +2cosθ x +1)) =f(2cosθ) = ((2π)/( (√(4−4cos^2 θ)))) =((2π)/(2(√(1−cos^2 θ)))) =(π/(∣sinθ∣))  ( we suppose here θ ≠ kπ  kfrom Z).
4)+dxx2+2cosθx+1=f(2cosθ)=2π44cos2θ=2π21cos2θ=πsinθ(wesupposehereθkπkfromZ).
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
2)(1/2)∫((2x+a−a)/((x^2 +ax+1)^2 ))dx  (1/2)∫((d(x^2 +ax+1))/((x^2 +ax+1)^2 ))dx−(a/2)∫(dx/([(x+(a/2))^2 +((√(1−(a^2 /4))) )^2 ]^2 ))  (1/2)×((−1)/((x^2 +ax+1)))−(a/2)I_2   I_2   let (x+(a/2))=(√(1−(a^2 /4))) tanθ=ktanθ  dx=k sec^2 θdθ  so I_2 =∫((ksec^2 θdθ)/([k^2 tan^2 θ+k^2 ]^2 ))  ∫((ksec^2 θ)/(k^4 sec^4 θ))dθ  (1/k^3 )∫(((1+cos2θ)/2))dθ  (1/(2k^3 ))θ+(1/(4k^3 ))sin2θ+c  (1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(4k^3 ))×((2(((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))+c  so   ((−1)/(2(x^2 +ax+1)))−(a/2)[(1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(2k^3 ))×(((((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))]  ∣((−1)/(2(x^2 +ax+1)))−(a/(4k^3 ))[tan^(−1) (((x+(a/2))/k))+(((x+(a/2))/k)/(1+(((x+(a/2))/k))^2 ))]∣_(−∞) ^∞   =0−(a/(4k^3 ))[{tan^(−1) (∞)−tan^(−1) (−∞)}+0]  =−(a/(4k^3 ))×(π/1)=((−aπ)/(4(1−(a^2 /4))^(3/2) ))    3)second part =((−(√2) π)/(4(1−(1/2))^(3/2) ))=((−(√2) π)/4)×(√2) ×(√2) ×(√2) =−π answer
2)122x+aa(x2+ax+1)2dx12d(x2+ax+1)(x2+ax+1)2dxa2dx[(x+a2)2+(1a24)2]212×1(x2+ax+1)a2I2I2let(x+a2)=1a24tanθ=ktanθdx=ksec2θdθsoI2=ksec2θdθ[k2tan2θ+k2]2ksec2θk4sec4θdθ1k3(1+cos2θ2)dθ12k3θ+14k3sin2θ+c12k3tan1(x+a2k)+14k3×2(x+a2k)1+(x+a2k)2+cso12(x2+ax+1)a2[12k3tan1(x+a2k)+12k3×(x+a2k)1+(x+a2k)2]12(x2+ax+1)a4k3[tan1(x+a2k)+x+a2k1+(x+a2k)2]=0a4k3[{tan1()tan1()}+0]=a4k3×π1=aπ4(1a24)323)secondpart=2π4(112)32=2π4×2×2×2=πanswer
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
1)∫(dx/(x^2 +2x(a/2)+(a^2 /4)+1−(a^2 /4)))dx  ∫(dx/(((√(1−(a^2 /4))) )^2 +(x+(a/2))^2 ))  so answer is  ∣(1/( (√(1−(a^2 /4))) ))tan^(−1) (((x+(a/2))/( (√(1−(a^2 /4))))))∣_(−∞) ^∞  [(a^2 /4)<1]  =(1/( (√(1−(a^2 /4)))))×{(π/2)−(−(π/2))}=(π/( (√(1−(a^2 /4)))))  3)(π/( (√(1−(2/4)))))=π(√2)
1)dxx2+2xa2+a24+1a24dxdx(1a24)2+(x+a2)2soansweris11a24tan1(x+a21a24)[a24<1]=11a24×{π2(π2)}=π1a243)π124=π2
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
4)∫_(−∞) ^∞ (dx/(x^2 +b^2 ))         [[[b^2 =1+2cosθ]  (1/b)∣tan^(−1) ((x/b))∣_(−∞) ^∞   (1/b)[tan^(−1) (∞)−tan^(−1) (−∞)]  =(1/( (√(1+2cosθ))))×{(π/2)−((−π)/2)}  =(π/( (√(1+2cosθ))))
4)dxx2+b2[[[b2=1+2cosθ]1btan1(xb)1b[tan1()tan1()]=11+2cosθ×{π2π2}=π1+2cosθ

Leave a Reply

Your email address will not be published. Required fields are marked *