Question Number 54376 by Abdo msup. last updated on 02/Feb/19

Commented by maxmathsup by imad last updated on 03/Feb/19

Commented by maxmathsup by imad last updated on 03/Feb/19

Commented by maxmathsup by imad last updated on 03/Feb/19

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
![2)(1/2)∫((2x+a−a)/((x^2 +ax+1)^2 ))dx (1/2)∫((d(x^2 +ax+1))/((x^2 +ax+1)^2 ))dx−(a/2)∫(dx/([(x+(a/2))^2 +((√(1−(a^2 /4))) )^2 ]^2 )) (1/2)×((−1)/((x^2 +ax+1)))−(a/2)I_2 I_2 let (x+(a/2))=(√(1−(a^2 /4))) tanθ=ktanθ dx=k sec^2 θdθ so I_2 =∫((ksec^2 θdθ)/([k^2 tan^2 θ+k^2 ]^2 )) ∫((ksec^2 θ)/(k^4 sec^4 θ))dθ (1/k^3 )∫(((1+cos2θ)/2))dθ (1/(2k^3 ))θ+(1/(4k^3 ))sin2θ+c (1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(4k^3 ))×((2(((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))+c so ((−1)/(2(x^2 +ax+1)))−(a/2)[(1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(2k^3 ))×(((((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))] ∣((−1)/(2(x^2 +ax+1)))−(a/(4k^3 ))[tan^(−1) (((x+(a/2))/k))+(((x+(a/2))/k)/(1+(((x+(a/2))/k))^2 ))]∣_(−∞) ^∞ =0−(a/(4k^3 ))[{tan^(−1) (∞)−tan^(−1) (−∞)}+0] =−(a/(4k^3 ))×(π/1)=((−aπ)/(4(1−(a^2 /4))^(3/2) )) 3)second part =((−(√2) π)/(4(1−(1/2))^(3/2) ))=((−(√2) π)/4)×(√2) ×(√2) ×(√2) =−π answer](https://www.tinkutara.com/question/Q54399.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
![1)∫(dx/(x^2 +2x(a/2)+(a^2 /4)+1−(a^2 /4)))dx ∫(dx/(((√(1−(a^2 /4))) )^2 +(x+(a/2))^2 )) so answer is ∣(1/( (√(1−(a^2 /4))) ))tan^(−1) (((x+(a/2))/( (√(1−(a^2 /4))))))∣_(−∞) ^∞ [(a^2 /4)<1] =(1/( (√(1−(a^2 /4)))))×{(π/2)−(−(π/2))}=(π/( (√(1−(a^2 /4))))) 3)(π/( (√(1−(2/4)))))=π(√2)](https://www.tinkutara.com/question/Q54393.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
![4)∫_(−∞) ^∞ (dx/(x^2 +b^2 )) [[[b^2 =1+2cosθ] (1/b)∣tan^(−1) ((x/b))∣_(−∞) ^∞ (1/b)[tan^(−1) (∞)−tan^(−1) (−∞)] =(1/( (√(1+2cosθ))))×{(π/2)−((−π)/2)} =(π/( (√(1+2cosθ))))](https://www.tinkutara.com/question/Q54400.png)