Menu Close

1-calculate-f-a-dx-x-2-ax-1-with-a-lt-2-2-calculate-g-a-x-x-2-ax-1-2-3-find-values-of-integrals-dx-x-2-2-x-1-and-




Question Number 54376 by Abdo msup. last updated on 02/Feb/19
1) calculate  f(a) =∫_(−∞) ^(+∞)    (dx/(x^2  +ax  +1))  with   ∣a∣<2  2) calculate g(a) =∫_(−∞) ^(+∞)  (x/((x^2  +ax+1)^2 ))  3)find values of integrals ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1))  and ∫_(−∞) ^(+∞)  (x/((x^2  +(√2)x +1)^2 ))  4) calculate A(θ) = ∫_(−∞) ^(+∞)    (dx/(x^2  +2cosθ +1))  θ is a given real.
$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{ax}\:\:+\mathrm{1}} \\ $$$${with}\:\:\:\mid{a}\mid<\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+{ax}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{values}\:{of}\:{integrals}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$${and}\:\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{cos}\theta\:+\mathrm{1}} \\ $$$$\theta\:{is}\:{a}\:{given}\:{real}. \\ $$
Commented by maxmathsup by imad last updated on 03/Feb/19
1) we have f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +ax +1))  ⇒f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +2x(a/2) +(a^2 /4)+1−(a^2 /4)))  =∫_(−∞) ^(+∞)     (dx/((x+(a/2))^2  +((4−a^2 )/4)))  =_(x+(a/2)=(1/2)(√(4−a^2 ))t)      ∫_(−∞) ^(+∞)    (1/(((4−a^2 )/4)(1+t^2 ))) (((√(4−a^2 ))dt)/2)  =2(1/( (√(4−a^2 )))) ∫_(−∞) ^(+∞)     (dt/(1+t^2 )) =((2π)/( (√(4−a^2 )))) ⇒f(a) =((2π)/( (√(4−a^2 )))) .  2)we have f^′ (a) =−∫_(−∞) ^(+∞)   ((xdx)/((x^2 +ax+1)^2 )) =−g(a) ⇒  g(a) =−f^′ (a) =−2π ((4−a^2 )^(−(1/2)) )^′ =−2π .(−(1/2))(−2a)(4−a^2 )^(−(3/2))   =−2πa (1/((4−a^2 )(√(4−a^2 )))) =((−2πa)/((4−a^2 )(√(4−a^2 ))))
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{ax}\:+\mathrm{1}}\:\:\Rightarrow{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\frac{{a}}{\mathrm{2}}\:+\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}−{a}^{\mathrm{2}} }{\mathrm{4}}}\:\:=_{{x}+\frac{{a}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }{t}} \:\:\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{4}−{a}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }{dt}}{\mathrm{2}} \\ $$$$=\mathrm{2}\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}\:\Rightarrow{f}\left({a}\right)\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}\:. \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{f}^{'} \left({a}\right)\:=−\int_{−\infty} ^{+\infty} \:\:\frac{{xdx}}{\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)^{\mathrm{2}} }\:=−{g}\left({a}\right)\:\Rightarrow \\ $$$${g}\left({a}\right)\:=−{f}^{'} \left({a}\right)\:=−\mathrm{2}\pi\:\left(\left(\mathrm{4}−{a}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)^{'} =−\mathrm{2}\pi\:.\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\mathrm{2}{a}\right)\left(\mathrm{4}−{a}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=−\mathrm{2}\pi{a}\:\frac{\mathrm{1}}{\left(\mathrm{4}−{a}^{\mathrm{2}} \right)\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}\:=\frac{−\mathrm{2}\pi{a}}{\left(\mathrm{4}−{a}^{\mathrm{2}} \right)\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }} \\ $$
Commented by maxmathsup by imad last updated on 03/Feb/19
3) ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1)) =f((√2)) =((2π)/( (√(4−2)))) =((2π)/( (√2))) =π(√2).  ∫_(−∞) ^(+∞)    ((xdx)/((x^2  +(√2)x +1)^2 )) =g((√2)) = ((−2π(√2))/(2(√2))) =−π .
$$\left.\mathrm{3}\right)\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}\:={f}\left(\sqrt{\mathrm{2}}\right)\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{4}−\mathrm{2}}}\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{2}}}\:=\pi\sqrt{\mathrm{2}}. \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{xdx}}{\left({x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}\right)^{\mathrm{2}} }\:={g}\left(\sqrt{\mathrm{2}}\right)\:=\:\frac{−\mathrm{2}\pi\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{2}}}\:=−\pi\:. \\ $$
Commented by maxmathsup by imad last updated on 03/Feb/19
4) ∫_(−∞) ^(+∞)   (dx/(x^2  +2cosθ x +1)) =f(2cosθ) = ((2π)/( (√(4−4cos^2 θ)))) =((2π)/(2(√(1−cos^2 θ)))) =(π/(∣sinθ∣))  ( we suppose here θ ≠ kπ  kfrom Z).
$$\left.\mathrm{4}\right)\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{cos}\theta\:{x}\:+\mathrm{1}}\:={f}\left(\mathrm{2}{cos}\theta\right)\:=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{4}−\mathrm{4}{cos}^{\mathrm{2}} \theta}}\:=\frac{\mathrm{2}\pi}{\mathrm{2}\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} \theta}}\:=\frac{\pi}{\mid{sin}\theta\mid} \\ $$$$\left(\:{we}\:{suppose}\:{here}\:\theta\:\neq\:{k}\pi\:\:{kfrom}\:{Z}\right). \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
2)(1/2)∫((2x+a−a)/((x^2 +ax+1)^2 ))dx  (1/2)∫((d(x^2 +ax+1))/((x^2 +ax+1)^2 ))dx−(a/2)∫(dx/([(x+(a/2))^2 +((√(1−(a^2 /4))) )^2 ]^2 ))  (1/2)×((−1)/((x^2 +ax+1)))−(a/2)I_2   I_2   let (x+(a/2))=(√(1−(a^2 /4))) tanθ=ktanθ  dx=k sec^2 θdθ  so I_2 =∫((ksec^2 θdθ)/([k^2 tan^2 θ+k^2 ]^2 ))  ∫((ksec^2 θ)/(k^4 sec^4 θ))dθ  (1/k^3 )∫(((1+cos2θ)/2))dθ  (1/(2k^3 ))θ+(1/(4k^3 ))sin2θ+c  (1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(4k^3 ))×((2(((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))+c  so   ((−1)/(2(x^2 +ax+1)))−(a/2)[(1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(2k^3 ))×(((((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))]  ∣((−1)/(2(x^2 +ax+1)))−(a/(4k^3 ))[tan^(−1) (((x+(a/2))/k))+(((x+(a/2))/k)/(1+(((x+(a/2))/k))^2 ))]∣_(−∞) ^∞   =0−(a/(4k^3 ))[{tan^(−1) (∞)−tan^(−1) (−∞)}+0]  =−(a/(4k^3 ))×(π/1)=((−aπ)/(4(1−(a^2 /4))^(3/2) ))    3)second part =((−(√2) π)/(4(1−(1/2))^(3/2) ))=((−(√2) π)/4)×(√2) ×(√2) ×(√2) =−π answer
$$\left.\mathrm{2}\right)\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+{a}−{a}}{\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)^{\mathrm{2}} }{dx}−\frac{{a}}{\mathrm{2}}\int\frac{{dx}}{\left[\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:\right)^{\mathrm{2}} \right]^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{−\mathrm{1}}{\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)}−\frac{{a}}{\mathrm{2}}{I}_{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} \:\:{let}\:\left({x}+\frac{{a}}{\mathrm{2}}\right)=\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:{tan}\theta={ktan}\theta \\ $$$${dx}={k}\:{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$${so}\:{I}_{\mathrm{2}} =\int\frac{{ksec}^{\mathrm{2}} \theta{d}\theta}{\left[{k}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta+{k}^{\mathrm{2}} \right]^{\mathrm{2}} } \\ $$$$\int\frac{{ksec}^{\mathrm{2}} \theta}{{k}^{\mathrm{4}} {sec}^{\mathrm{4}} \theta}{d}\theta \\ $$$$\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\int\left(\frac{\mathrm{1}+{cos}\mathrm{2}\theta}{\mathrm{2}}\right){d}\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{3}} }\theta+\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{3}} }{sin}\mathrm{2}\theta+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{3}} }{tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)+\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{3}} }×\frac{\mathrm{2}\left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)}{\mathrm{1}+\left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)^{\mathrm{2}} }+{c} \\ $$$${so}\: \\ $$$$\frac{−\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)}−\frac{{a}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{3}} }{tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)+\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{3}} }×\frac{\left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)}{\mathrm{1}+\left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)^{\mathrm{2}} }\right] \\ $$$$\mid\frac{−\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)}−\frac{{a}}{\mathrm{4}{k}^{\mathrm{3}} }\left[{tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)+\frac{\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}}{\mathrm{1}+\left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{{k}}\right)^{\mathrm{2}} }\right]\mid_{−\infty} ^{\infty} \\ $$$$=\mathrm{0}−\frac{{a}}{\mathrm{4}{k}^{\mathrm{3}} }\left[\left\{{tan}^{−\mathrm{1}} \left(\infty\right)−{tan}^{−\mathrm{1}} \left(−\infty\right)\right\}+\mathrm{0}\right] \\ $$$$=−\frac{{a}}{\mathrm{4}{k}^{\mathrm{3}} }×\frac{\pi}{\mathrm{1}}=\frac{−{a}\pi}{\mathrm{4}\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$ \\ $$$$\left.\mathrm{3}\right){second}\:{part}\:=\frac{−\sqrt{\mathrm{2}}\:\pi}{\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{−\sqrt{\mathrm{2}}\:\pi}{\mathrm{4}}×\sqrt{\mathrm{2}}\:×\sqrt{\mathrm{2}}\:×\sqrt{\mathrm{2}}\:=−\pi\:{answer} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
1)∫(dx/(x^2 +2x(a/2)+(a^2 /4)+1−(a^2 /4)))dx  ∫(dx/(((√(1−(a^2 /4))) )^2 +(x+(a/2))^2 ))  so answer is  ∣(1/( (√(1−(a^2 /4))) ))tan^(−1) (((x+(a/2))/( (√(1−(a^2 /4))))))∣_(−∞) ^∞  [(a^2 /4)<1]  =(1/( (√(1−(a^2 /4)))))×{(π/2)−(−(π/2))}=(π/( (√(1−(a^2 /4)))))  3)(π/( (√(1−(2/4)))))=π(√2)
$$\left.\mathrm{1}\right)\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\frac{{a}}{\mathrm{2}}+\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}{dx} \\ $$$$\int\frac{{dx}}{\left(\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:\right)^{\mathrm{2}} +\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${so}\:{answer}\:{is} \\ $$$$\mid\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:}{tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{{a}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}}\right)\mid_{−\infty} ^{\infty} \:\left[\frac{{a}^{\mathrm{2}} }{\mathrm{4}}<\mathrm{1}\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}}×\left\{\frac{\pi}{\mathrm{2}}−\left(−\frac{\pi}{\mathrm{2}}\right)\right\}=\frac{\pi}{\:\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$$\left.\mathrm{3}\right)\frac{\pi}{\:\sqrt{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{4}}}}=\pi\sqrt{\mathrm{2}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
4)∫_(−∞) ^∞ (dx/(x^2 +b^2 ))         [[[b^2 =1+2cosθ]  (1/b)∣tan^(−1) ((x/b))∣_(−∞) ^∞   (1/b)[tan^(−1) (∞)−tan^(−1) (−∞)]  =(1/( (√(1+2cosθ))))×{(π/2)−((−π)/2)}  =(π/( (√(1+2cosθ))))
$$\left.\mathrm{4}\right)\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\left[\left[\left[{b}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}{cos}\theta\right]\right.\right. \\ $$$$\frac{\mathrm{1}}{{b}}\mid{tan}^{−\mathrm{1}} \left(\frac{{x}}{{b}}\right)\mid_{−\infty} ^{\infty} \\ $$$$\frac{\mathrm{1}}{{b}}\left[{tan}^{−\mathrm{1}} \left(\infty\right)−{tan}^{−\mathrm{1}} \left(−\infty\right)\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{2}{cos}\theta}}×\left\{\frac{\pi}{\mathrm{2}}−\frac{−\pi}{\mathrm{2}}\right\} \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{1}+\mathrm{2}{cos}\theta}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *