Menu Close

1-calculate-f-x-0-pi-4-ln-1-xtan-d-2-find-the-values-of-integrals-0-pi-4-ln-1-tan-and-0-pi-4-ln-1-2tan-d-1-we-have-f-x-0-pi-4-tan-1-xtan-d-0-pi-4-




Question Number 55267 by maxmathsup by imad last updated on 25/Feb/19
1) calculate f(x)=∫_0 ^(π/4)  ln(1+xtanθ)dθ  2) find the values of integrals ∫_0 ^(π/4)  ln(1+tanθ)  and ∫_0 ^(π/4) ln(1+2tanθ)dθ .  1) we have f^′ (x)=∫_0 ^(π/4)    ((tanθ)/(1+xtanθ)) dθ =∫_0 ^(π/4)    (((sinθ)/(cosθ))/(1+x((sinθ)/(cosθ))))dθ  =∫_0 ^(π/4)   ((sinθ)/(cosθ +xsinθ)) dθ  =_(tan((θ/2))=t)      ∫_0 ^((√2)−1)     (((2t)/(1+t^2 ))/(((1−t^2 )/(1+t^2 )) +((2xt)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_0 ^((√2)−1)      ((4t)/((1+t^2 )(1−t^2  +2xt)))dt =−∫_0 ^((√2)−1)     ((4t)/((t^2 +1)(t^2 −2xt −1)))dt let decompose  F(t) = ((4t)/((t^2 +1)(t^2 −2xt −1)))  roots of  t^2 −2xt −1  Δ^′ =x^2 +1 ⇒t_1 =x+(√(x^2 +1)) and t_2 =x−(√(x^2  +1))  F(t)=(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2  +1))  a =lim_(t→t_1 ) (t−t_1 )F(t)=((4t_1 )/((t_1 ^2 +1)(t_1 −t_2 ))) =α  b =lim_(t→t_2 ) (t−t_2 )F(t) =((4t_2 )/((t_2 ^2  +1)(t_2 −t_1 ))) =β ⇒F(t)=(α/(t−t_1 )) +(β/(t−t_2 )) +((ct +d)/(t^2  +1))  F(0) =0=−(α/t_1 ) −(β/t_2 ) +d  ⇒d =(α/t_1 ) +(β/t_2 )  F(1)=(2/(−2x)) =−(1/x)=(α/(1−t_1 )) +(β/(1−t_2 )) +((c+d)/2) ⇒(1/x) =(α/(t_1 −1)) +(β/(t_2 −1)) −(c/2) −(d/2)  ⇒(c/2) =(α/(t_1 −1)) +(β/(t_2 −1)) −(d/2) −(1/x) ⇒c =((2α)/(t_1 −1)) +((2β)/(t_2 −1)) −d−(2/x)  ∫ F(t)dt =αln∣t−t_1 ∣ +βln∣t−t_2 ∣ +(c/2)ln(t^2  +1) +d arctan(t) ⇒  ∫_0 ^((√2)−1) F(t)dt =[αln∣t−t_1 ∣+βln∣t−t_2 ∣ +(c/2)ln(t^2  +1)]_0 ^((√2)−1)   =αln∣(√2)−1−t_1 ∣ +βln∣(√2)−1−t_2 ∣ +(c/2)ln(4−2(√2))   =αln∣(√2)−1−x−(√(1+x^2 )))+βln∣(√2)−1−x+(√(1+x^2 ))) +((ln(4−2(√2)))/2)c =f^′ (x) ⇒  f(x)=∫ αln∣(√2)−1−x−(√(1+x^2 ))∣)dx+β∫ ln∣(√2)−1+(√(1+x^2 ))∣dx  +((cx)/2)ln(4−2(√2)) +C ....be continued...
1)calculatef(x)=0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals0π4ln(1+tanθ)and0π4ln(1+2tanθ)dθ.1)wehavef(x)=0π4tanθ1+xtanθdθ=0π4sinθcosθ1+xsinθcosθdθ=0π4sinθcosθ+xsinθdθ=tan(θ2)=t0212t1+t21t21+t2+2xt1+t22dt1+t2=0214t(1+t2)(1t2+2xt)dt=0214t(t2+1)(t22xt1)dtletdecomposeF(t)=4t(t2+1)(t22xt1)rootsoft22xt1Δ=x2+1t1=x+x2+1andt2=xx2+1F(t)=att1+btt2+ct+dt2+1a=limtt1(tt1)F(t)=4t1(t12+1)(t1t2)=αb=limtt2(tt2)F(t)=4t2(t22+1)(t2t1)=βF(t)=αtt1+βtt2+ct+dt2+1F(0)=0=αt1βt2+dd=αt1+βt2F(1)=22x=1x=α1t1+β1t2+c+d21x=αt11+βt21c2d2c2=αt11+βt21d21xc=2αt11+2βt21d2xF(t)dt=αlntt1+βlntt2+c2ln(t2+1)+darctan(t)021F(t)dt=[αlntt1+βlntt2+c2ln(t2+1)]021=αln21t1+βln21t2+c2ln(422)=αln21x1+x2)+βln21x+1+x2)+ln(422)2c=f(x)f(x)=αln21x1+x2)dx+βln21+1+x2dx+cx2ln(422)+C.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *