1-calculate-f-x-0-pi-4-ln-1-xtan-d-2-find-the-values-of-integrals-0-pi-4-ln-1-tan-and-0-pi-4-ln-1-2tan-d-1-we-have-f-x-0-pi-4-tan-1-xtan-d-0-pi-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 55267 by maxmathsup by imad last updated on 25/Feb/19 1)calculatef(x)=∫0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals∫0π4ln(1+tanθ)and∫0π4ln(1+2tanθ)dθ.1)wehavef′(x)=∫0π4tanθ1+xtanθdθ=∫0π4sinθcosθ1+xsinθcosθdθ=∫0π4sinθcosθ+xsinθdθ=tan(θ2)=t∫02−12t1+t21−t21+t2+2xt1+t22dt1+t2=∫02−14t(1+t2)(1−t2+2xt)dt=−∫02−14t(t2+1)(t2−2xt−1)dtletdecomposeF(t)=4t(t2+1)(t2−2xt−1)rootsoft2−2xt−1Δ′=x2+1⇒t1=x+x2+1andt2=x−x2+1F(t)=at−t1+bt−t2+ct+dt2+1a=limt→t1(t−t1)F(t)=4t1(t12+1)(t1−t2)=αb=limt→t2(t−t2)F(t)=4t2(t22+1)(t2−t1)=β⇒F(t)=αt−t1+βt−t2+ct+dt2+1F(0)=0=−αt1−βt2+d⇒d=αt1+βt2F(1)=2−2x=−1x=α1−t1+β1−t2+c+d2⇒1x=αt1−1+βt2−1−c2−d2⇒c2=αt1−1+βt2−1−d2−1x⇒c=2αt1−1+2βt2−1−d−2x∫F(t)dt=αln∣t−t1∣+βln∣t−t2∣+c2ln(t2+1)+darctan(t)⇒∫02−1F(t)dt=[αln∣t−t1∣+βln∣t−t2∣+c2ln(t2+1)]02−1=αln∣2−1−t1∣+βln∣2−1−t2∣+c2ln(4−22)=αln∣2−1−x−1+x2)+βln∣2−1−x+1+x2)+ln(4−22)2c=f′(x)⇒f(x)=∫αln∣2−1−x−1+x2∣)dx+β∫ln∣2−1+1+x2∣dx+cx2ln(4−22)+C….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: what-remain-when-we-divise-2222-3333-by-3333-2222-Next Next post: calculate-n-0-1-n-4n-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.