Menu Close

1-calculate-f-x-y-0-e-xt-cos-yt-t-dt-and-g-x-y-0-e-xt-sin-yt-t-dt-with-x-gt-0-and-y-gt-0-2-find-the-values-of-0-e-2t-cos-t-t-dt-and-0-




Question Number 62335 by maxmathsup by imad last updated on 19/Jun/19
1) calculate f(x,y) =∫_0 ^∞  ((e^(−xt) cos(yt))/( (√t))) dt and g(x,y) =∫_0 ^∞   ((e^(−xt) sin(yt))/( (√t))) dt  with x>0  and y>0  2) find the values of  ∫_0 ^∞  ((e^(−2t)  cos(t))/( (√t))) dt and ∫_0 ^∞  ((e^(−t) cos(2t))/( (√t))) dt
1)calculatef(x,y)=0extcos(yt)tdtandg(x,y)=0extsin(yt)tdtwithx>0andy>02)findthevaluesof0e2tcos(t)tdtand0etcos(2t)tdt
Commented by maxmathsup by imad last updated on 20/Jun/19
1) we have f(x,y)+ig(x,y) =∫_0 ^∞  (e^(−xt) /( (√t)))e^(iyt) dt =∫_0 ^∞   (e^(−(x+iy)t) /( (√t))) dt   changement  (√(x+iy))(√t)=u  give f(x,y)+ig(x,y) =(√(x+iy))∫_0 ^∞   (e^(−u^2 ) /u)  (√t)=(u/( (√(x+iy)))) ⇒t =(u^2 /(x+iy)) ⇒dt =((2udu)/(x+iy)) ⇒f(x,y)+ig(x,y)=(√(x+iy))∫_0 ^∞   (e^(−u^2 ) /u) ((2udu)/(x+iy))  =(2/( (√(x+iy))))∫_0 ^∞   e^(−u^2 ) du  =(2/( (√(x+iy)))) ((√π)/2)=((√π)/( (√(x+iy))))  we have x+iy =(√(x^2  +y^2 )){(x/( (√(x^2 +y^2 )))) +i(y/( (√(x^2  +y^2 ))))} =r e^(iθ)  ⇒r =(√(x^2  +y^2 ))  cosθ =(x/( (√(x^2  +y^2 ))))  and sinθ =(y/( (√(x^2  +y^2 )))) ⇒tanθ =(y/x)      ⇒  θ =arctan((y/x)) ⇒x+iy =(x^2  +y^2 )^(1/2)  e^(iarctan((y/x)))  ⇒(√(x+iy)) =(x^2  +y^2 )^(1/4)  e^((i/2)arctan((y/x)))  ⇒  f(x,y) =(x^2  +y^2 )^(1/4)  cos((1/2)arctan((y/x))) and g(x,y) =(x^2  +y^2 )^(1/4)  sin((1/2)arctan((y/x)))
1)wehavef(x,y)+ig(x,y)=0extteiytdt=0e(x+iy)ttdtchangementx+iyt=ugivef(x,y)+ig(x,y)=x+iy0eu2ut=ux+iyt=u2x+iydt=2udux+iyf(x,y)+ig(x,y)=x+iy0eu2u2udux+iy=2x+iy0eu2du=2x+iyπ2=πx+iywehavex+iy=x2+y2{xx2+y2+iyx2+y2}=reiθr=x2+y2cosθ=xx2+y2andsinθ=yx2+y2tanθ=yxθ=arctan(yx)x+iy=(x2+y2)12eiarctan(yx)x+iy=(x2+y2)14ei2arctan(yx)f(x,y)=(x2+y2)14cos(12arctan(yx))andg(x,y)=(x2+y2)14sin(12arctan(yx))
Commented by maxmathsup by imad last updated on 20/Jun/19
2) ∫_0 ^∞   ((e^(−2t)  cos(t))/( (√t))) dt =f(2,1) =^4 (√5)cos((1/2)arctan((1/2)))  ∫_0 ^∞   ((e^(−t)  cos(2t))/( (√t))) dt =f(1,2) =^4 (√5)cos((1/2) arctan(2))
2)0e2tcos(t)tdt=f(2,1)=45cos(12arctan(12))0etcos(2t)tdt=f(1,2)=45cos(12arctan(2))

Leave a Reply

Your email address will not be published. Required fields are marked *