Question Number 62335 by maxmathsup by imad last updated on 19/Jun/19
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{xt}} {cos}\left({yt}\right)}{\:\sqrt{{t}}}\:{dt}\:{and}\:{g}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{xt}} {sin}\left({yt}\right)}{\:\sqrt{{t}}}\:{dt} \\ $$$${with}\:{x}>\mathrm{0}\:\:{and}\:{y}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{t}} \:{cos}\left({t}\right)}{\:\sqrt{{t}}}\:{dt}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} {cos}\left(\mathrm{2}{t}\right)}{\:\sqrt{{t}}}\:{dt} \\ $$
Commented by maxmathsup by imad last updated on 20/Jun/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x},{y}\right)+{ig}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{xt}} }{\:\sqrt{{t}}}{e}^{{iyt}} {dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left({x}+{iy}\right){t}} }{\:\sqrt{{t}}}\:{dt}\: \\ $$$${changement}\:\:\sqrt{{x}+{iy}}\sqrt{{t}}={u}\:\:{give}\:{f}\left({x},{y}\right)+{ig}\left({x},{y}\right)\:=\sqrt{{x}+{iy}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}} \\ $$$$\sqrt{{t}}=\frac{{u}}{\:\sqrt{{x}+{iy}}}\:\Rightarrow{t}\:=\frac{{u}^{\mathrm{2}} }{{x}+{iy}}\:\Rightarrow{dt}\:=\frac{\mathrm{2}{udu}}{{x}+{iy}}\:\Rightarrow{f}\left({x},{y}\right)+{ig}\left({x},{y}\right)=\sqrt{{x}+{iy}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}\:\frac{\mathrm{2}{udu}}{{x}+{iy}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{x}+{iy}}}\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}^{\mathrm{2}} } {du}\:\:=\frac{\mathrm{2}}{\:\sqrt{{x}+{iy}}}\:\frac{\sqrt{\pi}}{\mathrm{2}}=\frac{\sqrt{\pi}}{\:\sqrt{{x}+{iy}}} \\ $$$${we}\:{have}\:{x}+{iy}\:=\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\left\{\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:+{i}\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\right\}\:={r}\:{e}^{{i}\theta} \:\Rightarrow{r}\:=\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$${cos}\theta\:=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:\:{and}\:{sin}\theta\:=\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:\Rightarrow{tan}\theta\:=\frac{{y}}{{x}}\:\:\:\:\:\:\Rightarrow \\ $$$$\theta\:={arctan}\left(\frac{{y}}{{x}}\right)\:\Rightarrow{x}+{iy}\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{{iarctan}\left(\frac{{y}}{{x}}\right)} \:\Rightarrow\sqrt{{x}+{iy}}\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\frac{{y}}{{x}}\right)} \:\Rightarrow \\ $$$${f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{{y}}{{x}}\right)\right)\:{and}\:{g}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{{y}}{{x}}\right)\right) \\ $$
Commented by maxmathsup by imad last updated on 20/Jun/19
$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{t}} \:{cos}\left({t}\right)}{\:\sqrt{{t}}}\:{dt}\:={f}\left(\mathrm{2},\mathrm{1}\right)\:=^{\mathrm{4}} \sqrt{\mathrm{5}}{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} \:{cos}\left(\mathrm{2}{t}\right)}{\:\sqrt{{t}}}\:{dt}\:={f}\left(\mathrm{1},\mathrm{2}\right)\:=^{\mathrm{4}} \sqrt{\mathrm{5}}{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\:{arctan}\left(\mathrm{2}\right)\right) \\ $$