Question Number 43676 by maxmathsup by imad last updated on 13/Sep/18
$$\left.\mathrm{1}\right){calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:{and}\:\:{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{i}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$
Commented by maxmathsup by imad last updated on 13/Sep/18
$${i}^{\mathrm{2}} =−\mathrm{1} \\ $$
Commented by maxmathsup by imad last updated on 15/Sep/18
$${we}\:{have}\:\mathrm{2}{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:{let}\:\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} −{i}}\:\:{we}\:{have} \\ $$$$\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{\left({z}−\sqrt{{i}}\right)\left({z}+\sqrt{{i}}\right)}\:=\:\frac{\mathrm{1}}{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}\:+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=\:\mathrm{2}{i}\pi\:.\frac{\mathrm{1}}{\mathrm{2}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} }\:={i}\pi\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$${I}\:=\frac{{i}\pi}{\mathrm{2}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:\:\:\:\:\:\:{also}\:{we}\:{have}\:\mathrm{2}{J}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{i}}\:{let}\:\psi\left({z}\right)\:=\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+{i}} \\ $$$$\psi\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)}\:=\frac{\mathrm{1}}{\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}\:\:{and}\: \\ $$$$\int_{−\infty} ^{+\infty} \:\psi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\psi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\mathrm{2}{i}\pi\:.\frac{\mathrm{1}}{−\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} }\:=−{i}\pi\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow{J}=−\frac{{i}\pi}{\mathrm{2}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \\ $$$${another}\:{way}\:{we}\:{see}\:{that}\:{J}\:=\overset{−} {{I}}\:\Rightarrow\:{J}\:=\:−\frac{{i}\pi}{\mathrm{2}}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{I}\:−{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{i}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+{i}}\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{i}}{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx}\:\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\:{I}\:−{J}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\frac{{i}\pi}{\mathrm{2}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:+\frac{{i}\pi}{\mathrm{2}}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \right\}\:=\:\frac{\pi}{\mathrm{4}}\left\{\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right\}\:=\frac{\pi}{\mathrm{4}}\:\left(\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{4}}\right)\right\}=\frac{\pi}{\mathrm{2}}\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:. \\ $$