Menu Close

1-calculate-I-0-dx-x-2-i-and-J-0-dx-x-2-i-2-find-the-value-of-0-dx-x-4-1-




Question Number 43676 by maxmathsup by imad last updated on 13/Sep/18
1)calculate  I = ∫_0 ^∞     (dx/(x^2 −i))  and  J = ∫_0 ^∞   (dx/(x^2  +i))  2) find the value of ∫_0 ^∞    (dx/(x^4  +1))
1)calculateI=0dxx2iandJ=0dxx2+i2)findthevalueof0dxx4+1
Commented by maxmathsup by imad last updated on 13/Sep/18
i^2 =−1
i2=1
Commented by maxmathsup by imad last updated on 15/Sep/18
we have 2I = ∫_(−∞) ^(+∞)    (dx/(x^2 −i))  let ϕ(z) = (1/(z^2 −i))  we have  ϕ(z) = (1/((z−(√i))(z+(√i)))) = (1/((z−e^((iπ)/4) )(z +e^((iπ)/4) )))  residus theorem give  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,e^((iπ)/4) ) = 2iπ .(1/(2 e^((iπ)/4) )) =iπ e^(−((iπ)/4))  ⇒  I =((iπ)/2) e^(−((iπ)/4))        also we have 2J =∫_(−∞) ^(+∞)   (dx/(x^2  +i)) let ψ(z) =(1/(z^2  +i))  ψ(z) =(1/((z−(√(−i)))(z+(√(−i))))) =(1/((z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  and   ∫_(−∞) ^(+∞)  ψ(z)dz =2iπ Res(ψ,−e^(−((iπ)/4)) ) =2iπ .(1/(−2 e^(−((iπ)/4)) )) =−iπ e^((iπ)/4)  ⇒J=−((iπ)/2)e^((iπ)/4)   another way we see that J =I^−  ⇒ J = −((iπ)/2) e^((iπ)/4)  .  2) we have I −J = ∫_0 ^∞  {(1/(x^2 −i)) −(1/(x^2  +i))}dx  =∫_0 ^∞   ((2i)/(x^4  +1))dx ⇒ ∫_0 ^∞   (dx/(x^4  +1)) =(1/(2i)){ I −J}  =(1/(2i)){((iπ)/2) e^(−((iπ)/4))  +((iπ)/2) e^((iπ)/4) } = (π/4){ e^((iπ)/4)  +e^(−((iπ)/4)) } =(π/4) (2cos((π/4))}=(π/2) .(1/( (√2))) =(π/(2(√2))) .
wehave2I=+dxx2iletφ(z)=1z2iwehaveφ(z)=1(zi)(z+i)=1(zeiπ4)(z+eiπ4)residustheoremgive+φ(z)dz=2iπRes(φ,eiπ4)=2iπ.12eiπ4=iπeiπ4I=iπ2eiπ4alsowehave2J=+dxx2+iletψ(z)=1z2+iψ(z)=1(zi)(z+i)=1(zeiπ4)(z+eiπ4)and+ψ(z)dz=2iπRes(ψ,eiπ4)=2iπ.12eiπ4=iπeiπ4J=iπ2eiπ4anotherwayweseethatJ=IJ=iπ2eiπ4.2)wehaveIJ=0{1x2i1x2+i}dx=02ix4+1dx0dxx4+1=12i{IJ}=12i{iπ2eiπ4+iπ2eiπ4}=π4{eiπ4+eiπ4}=π4(2cos(π4)}=π2.12=π22.

Leave a Reply

Your email address will not be published. Required fields are marked *