1-calculate-I-dx-x-2-i-and-J-dx-x-2-i-2-find-the-value-of-dx-x-4-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 56629 by maxmathsup by imad last updated on 19/Mar/19 1)calculateI=∫−∞+∞dxx2−iandJ=∫−∞+∞dxx2−i2)findthevalueof∫−∞+∞dxx4+1 Commented by maxmathsup by imad last updated on 19/Mar/19 J=∫−∞+∞dxx2+i Commented by maxmathsup by imad last updated on 20/Mar/19 1)letφ(z)=1z2−i⇒φ(z)=1(z−i)(z+i)=1(z−eiπ4)(z+eiπ4)sothepolesofφare+−eiπ4residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,eiπ4)Res(φ,eiπ4)=limz→eiπ4(z−eiπ4)φ(z)=12eiπ4=12e−iπ4⇒∫−∞+∞φ(z)dz=2iπ12e−iπ4=iπe−iπ4⇒I=iπe−iπ4letcalculateJ=∫−∞+∞dxx2+iletW(z)=1z2+i⇒W(z)=1(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−e−iπ4residustheoremgive∫−∞+∞W(z)dz=2iπRes(W,−e−iπ4)Res(W,−e−iπ4)=limz→−e−iπ4(z+e−iπ4)W(z)=1−2e−iπ4=−12eiπ4⇒∫−∞+∞W(z)dz=2iπ(−12eiπ4)=−iπeiπ4=JalsowecanusethatJ=conj(I)=conj(iπe−iπ4)=−iπeiπ42)∫−∞+∞dxx4+1=∫−∞+∞dx(x2−i)(x2+i)=12i∫−∞+∞{1x2−i−1x2+i}dx=12i{I−J}=12i{iπe−iπ4+iπeiπ4}=π2(2cos(π4))=π12=π2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-real-solution-of-equality-x-3-2x-2-4x-1-0-Please-show-your-workings-Next Next post: Find-minimum-area-of-the-part-y-x-2-and-y-kx-x-2-k-k-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.