Menu Close

1-calculate-I-dx-x-2-i-and-J-dx-x-2-i-2-find-the-value-of-dx-x-4-1-




Question Number 56629 by maxmathsup by imad last updated on 19/Mar/19
1) calculate I =∫_(−∞) ^(+∞)   (dx/(x^2 −i))   and J =∫_(−∞) ^(+∞)   (dx/(x^2 −i))  2) find the value of ∫_(−∞) ^(+∞)   (dx/(x^4  +1))
1)calculateI=+dxx2iandJ=+dxx2i2)findthevalueof+dxx4+1
Commented by maxmathsup by imad last updated on 19/Mar/19
 J =∫_(−∞) ^(+∞)   (dx/(x^2  +i))
J=+dxx2+i
Commented by maxmathsup by imad last updated on 20/Mar/19
1) let ϕ(z)=(1/(z^2 −i)) ⇒ ϕ(z)= (1/((z−(√i))(z+(√i)))) =(1/((z−e^((iπ)/4) )(z+e^((iπ)/4) ))) so the poles of  ϕ are +^− e^((iπ)/4)   residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz=2iπRes(ϕ,e^((iπ)/4) )  Res(ϕ, e^((iπ)/4) )=lim_(z→e^((iπ)/4) )    (z−e^((iπ)/4) )ϕ(z)=(1/(2 e^((iπ)/4) )) =(1/2) e^(−((iπ)/4))  ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ(1/2) e^(−((iπ)/4))   =iπ e^(−((iπ)/4))  ⇒ I =iπ e^(−((iπ)/4))     let calculate J =∫_(−∞) ^(+∞)  (dx/(x^2  +i))  let W(z)=(1/(z^2  +i)) ⇒W(z)=(1/((z−e^(−((iπ)/4)) )(z +e^(−((iπ)/4)) )))  so the poles of ϕ are +^− e^(−((iπ)/4))   residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,−e^(−((iπ)/4)) )  Res(W,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )    (z+e^(−((iπ)/4)) )W(z) =(1/(−2 e^(−((iπ)/4)) )) =−(1/2) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ (−(1/2) e^((iπ)/4) ) =−iπ e^((iπ)/4)    =J   also we can use that  J =conj(I) =conj(iπ e^(−((iπ)/4)) )=−iπ e^((iπ)/4)    2)  ∫_(−∞) ^(+∞)   (dx/(x^4  +1)) =∫_(−∞) ^(+∞)   (dx/((x^2 −i)(x^2  +i))) =(1/(2i))∫_(−∞) ^(+∞) {(1/(x^2 −i)) −(1/(x^2  +i))}dx  =(1/(2i)){ I−J} =(1/(2i)){iπ e^(−((iπ)/4))  +i π e^((iπ)/4) } =(π/2) (2cos((π/4)))=π (1/( (√2))) =(π/( (√2))) .
1)letφ(z)=1z2iφ(z)=1(zi)(z+i)=1(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4residustheoremgive+φ(z)dz=2iπRes(φ,eiπ4)Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=12eiπ4=12eiπ4+φ(z)dz=2iπ12eiπ4=iπeiπ4I=iπeiπ4letcalculateJ=+dxx2+iletW(z)=1z2+iW(z)=1(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4residustheoremgive+W(z)dz=2iπRes(W,eiπ4)Res(W,eiπ4)=limzeiπ4(z+eiπ4)W(z)=12eiπ4=12eiπ4+W(z)dz=2iπ(12eiπ4)=iπeiπ4=JalsowecanusethatJ=conj(I)=conj(iπeiπ4)=iπeiπ42)+dxx4+1=+dx(x2i)(x2+i)=12i+{1x2i1x2+i}dx=12i{IJ}=12i{iπeiπ4+iπeiπ4}=π2(2cos(π4))=π12=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *