Question Number 48495 by maxmathsup by imad last updated on 24/Nov/18
$$\left.\mathrm{1}\right){calculate}\:\:{I}\:=\int\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 25/Nov/18
$${by}\:{parts}\:{u}^{'} =\frac{\mathrm{1}}{\mathrm{1}+{t}}\:{and}\:{v}={ln}\left(\mathrm{1}+{t}\right)\:\Rightarrow\:{I}\:={ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)−\int\:\frac{{ln}\left({t}\right)}{\mathrm{1}+{t}}{dt}\:={ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)−{I}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:={ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)+{c} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right). \\ $$$$ \\ $$
Answered by Abdulhafeez Abu qatada last updated on 25/Nov/18