Menu Close

1-calculate-I-n-0-x-n-e-1-i-x-dx-with-n-integr-natural-and-i-2-1-2-find-0-x-4k-3-xsinx-dx-




Question Number 46612 by maxmathsup by imad last updated on 29/Oct/18
1) calculate I_n = ∫_0 ^∞  x^n  e^((1−i)x) dx with n integr natural and i^2 =−1  2) find ∫_0 ^∞  x^(4k+3)  xsinx dx .
1)calculateIn=0xne(1i)xdxwithnintegrnaturalandi2=12)find0x4k+3xsinxdx.
Commented by maxmathsup by imad last updated on 29/Oct/18
2)the Q is find ∫_0 ^∞  e^(−x)  x^(4k+3)  sinx dx .
2)theQisfind0exx4k+3sinxdx.
Commented by maxmathsup by imad last updated on 29/Oct/18
1) theQ is calculateI_n = ∫_0 ^∞   x^n  e^((−1+i)x) dx
1)theQiscalculateIn=0xne(1+i)xdx
Commented by maxmathsup by imad last updated on 29/Oct/18
1) we have I_n = ∫_0 ^∞  x^n  e^((−1+i)x) dx =∫_0 ^∞  x^n  e^(−(1−i)x) dx changement (1−i)x=t  give  I_n =∫_0 ^∞  ((t/(1−i)))^n  e^(−t)  (dt/(1−i)) =(1/((1−i)^(n+1) )) ∫_0 ^∞  t^n  e^(−t)  dt  =(1/((1−i)^(n+1) )) Γ(n+1) =((n!)/((1−i)^(n+1) )) =((n!)/(((√2)e^(−((iπ)/4)) )^(n+1) ))  =((n!)/2^((n+1)/2) ) e^(i(((n+1)/4)π)) =((n!)/2^((n+1)/2) ){ cos((((n+1)π)/4))+i sin((((n+1)π)/4))}
1)wehaveIn=0xne(1+i)xdx=0xne(1i)xdxchangement(1i)x=tgiveIn=0(t1i)netdt1i=1(1i)n+10tnetdt=1(1i)n+1Γ(n+1)=n!(1i)n+1=n!(2eiπ4)n+1=n!2n+12ei(n+14π)=n!2n+12{cos((n+1)π4)+isin((n+1)π4)}
Commented by maxmathsup by imad last updated on 29/Oct/18
2) we have ∫_0 ^∞  e^(−x)  x^(4k+3)  sinx dx =Im(∫_0 ^∞  x^(4k+3) e^((−1+i)x) dx)  =Im( I_(4k+3)  ) =(((4k+3)!)/2^(2k+2) ) sin((((4k+4)π)/4)) =(((4k+3)!)/2^(2k+2) )sin((k+1)π) =0
2)wehave0exx4k+3sinxdx=Im(0x4k+3e(1+i)xdx)=Im(I4k+3)=(4k+3)!22k+2sin((4k+4)π4)=(4k+3)!22k+2sin((k+1)π)=0
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
(1−i)x=−t           [  t=(i−1)x]  dx=((−dt)/((1−i)))  ∫_0 ^∞ (t^n /((i−1)^n ))×e^(−t)  ×((−dt)/((1−i)))  (1/((i−1)^(n+1) ))∫_0 ^∞ e^(−t) t^(n+1−1) dt  (1/((i−1)^(n+1) ))×⌈(n+1)  (1/((i−1)^(n+1) ))×n!  =(((−1)^(n+1) )/((1−i)^(n+1) ))×(((1+i)^(n+1) )/((1+i)^(n+1) ))×n!  =(((−1)^(n+1) )/((2)^(n+1) ))×{(√2) ((1/( (√2) ))+i×(1/( (√2))))}^(n+1) ×n!  =(((−1)^(n+1) )/2^((n+1)/2) )×{cos(π/4)+isin(π/4)}^(n+1) ×n!  =(((−1)^(n+1) )/2^((n+1)/2) )×{cos(2kπ+(π/4))+isin(2kπ+(π/4))}^(n+1) ×n!
(1i)x=t[t=(i1)x]dx=dt(1i)0tn(i1)n×et×dt(1i)1(i1)n+10ettn+11dt1(i1)n+1×(n+1)1(i1)n+1×n!=(1)n+1(1i)n+1×(1+i)n+1(1+i)n+1×n!=(1)n+1(2)n+1×{2(12+i×12)}n+1×n!=(1)n+12n+12×{cosπ4+isinπ4}n+1×n!=(1)n+12n+12×{cos(2kπ+π4)+isin(2kπ+π4)}n+1×n!

Leave a Reply

Your email address will not be published. Required fields are marked *