Menu Close

1-Calculate-lim-x-0-tgx-m-sin-x-n-m-n-N-2-f-a-existe-calculate-lim-x-x-f-a-a-x-f-a-x-R-




Question Number 162726 by LEKOUMA last updated on 31/Dec/21
1) Calculate  lim_(x→0) ((tgx^m )/((sin x)^n )),  (m, n∈  N)  2) f′(a) existe, calculate  lim_(x→+∞) x[f(a+(a/x))−f(a−(β/x))],   (α, β ∈  R)
1)Calculatelimx0tgxm(sinx)n,(m,nN)2)f(a)existe,calculatelimx+x[f(a+ax)f(aβx)],(α,βR)
Answered by mr W last updated on 01/Jan/22
(1)  lim_(x→0) ((tgx^m )/((sin x)^n ))  =lim_(x→0) ((tgx^m )/x^m )×((x/(sin x)))^n ×x^(m−n)   =lim_(x→0) x^(m−n) = { ((1 if m=n)),((0 if m>n)),((∞ if m<n)) :}    (2)  lim_(x→+∞) x[f(a+(α/x))−f(a)−f(a−(β/x))+f(a)]   =lim_(x→+∞) [((f(a+(α/x))−f(a))/(1/x))−((f(a−(β/x))−f(a))/(1/x))]   =lim_(x→+∞) [α×((f(a+(α/x))−f(a))/(α/x))+β×((f(a−(β/x))−f(a))/(−(β/x)))]   =lim_(h,k→0) [α×((f(a+h)−f(a))/h)+β×((f(a+k)−f(a))/k)]   =αf′(a)+βf′(a)  =(α+β)f′(a)
(1)limx0tgxm(sinx)n=limx0tgxmxm×(xsinx)n×xmn=limx0xmn={1ifm=n0ifm>nifm<n(2)limx+x[f(a+αx)f(a)f(aβx)+f(a)]=limx+[f(a+αx)f(a)1xf(aβx)f(a)1x]=limx+[α×f(a+αx)f(a)αx+β×f(aβx)f(a)βx]=limh,k0[α×f(a+h)f(a)h+β×f(a+k)f(a)k]=αf(a)+βf(a)=(α+β)f(a)
Commented by Ar Brandon last updated on 01/Jan/22
👏👏👏First comment of the year (GMT+1)  Happy New year, Sir !
👏👏👏First comment of the year (GMT+1)
Happy New year, Sir !
Commented by mr W last updated on 01/Jan/22
thanks!  the same to you and all others!
thanks!thesametoyouandallothers!
Commented by Ar Brandon last updated on 01/Jan/22
Thanks Sir.
ThanksSir.

Leave a Reply

Your email address will not be published. Required fields are marked *