Question Number 162726 by LEKOUMA last updated on 31/Dec/21
![1) Calculate lim_(x→0) ((tgx^m )/((sin x)^n )), (m, n∈ N) 2) f′(a) existe, calculate lim_(x→+∞) x[f(a+(a/x))−f(a−(β/x))], (α, β ∈ R)](https://www.tinkutara.com/question/Q162726.png)
Answered by mr W last updated on 01/Jan/22
![(1) lim_(x→0) ((tgx^m )/((sin x)^n )) =lim_(x→0) ((tgx^m )/x^m )×((x/(sin x)))^n ×x^(m−n) =lim_(x→0) x^(m−n) = { ((1 if m=n)),((0 if m>n)),((∞ if m<n)) :} (2) lim_(x→+∞) x[f(a+(α/x))−f(a)−f(a−(β/x))+f(a)] =lim_(x→+∞) [((f(a+(α/x))−f(a))/(1/x))−((f(a−(β/x))−f(a))/(1/x))] =lim_(x→+∞) [α×((f(a+(α/x))−f(a))/(α/x))+β×((f(a−(β/x))−f(a))/(−(β/x)))] =lim_(h,k→0) [α×((f(a+h)−f(a))/h)+β×((f(a+k)−f(a))/k)] =αf′(a)+βf′(a) =(α+β)f′(a)](https://www.tinkutara.com/question/Q162745.png)
Commented by Ar Brandon last updated on 01/Jan/22

Happy New year, Sir !
Commented by mr W last updated on 01/Jan/22

Commented by Ar Brandon last updated on 01/Jan/22
