Menu Close

1-calculate-n-0-x-n-4n-2-1-with-x-lt-1-2-find-the-value-of-n-0-1-4n-2-1-and-n-0-1-n-4n-2-1-




Question Number 94331 by mathmax by abdo last updated on 18/May/20
1) calculate Σ_(n=0) ^∞  (x^n /(4n^2 −1))  with ∣x∣<1  2) find the value of Σ_(n=0) ^∞  (1/(4n^2 −1)) and Σ_(n=0) ^∞  (((−1)^n )/(4n^2 −1))
1)calculaten=0xn4n21withx∣<12)findthevalueofn=014n21andn=0(1)n4n21
Answered by mathmax by abdo last updated on 19/May/20
1) let f(x) =Σ_(n=0) ^∞  (x^n /(4n^2 −1)) ⇒f(x) =Σ_(n=0) ^∞  (x^n /((2n−1)(2n+1)))  =(1/2)Σ_(n=0) ^∞ ((1/(2n−1))−(1/(2n+1)))x^n  =(1/2)Σ_(n=0) ^∞  (x^n /(2n−1))−(1/2)Σ_(n=0) ^∞  (x^n /(2n+1))  case (1) 0<x<1 ⇒Σ_(n=0) ^∞  (x^n /(2n+1)) =(1/( (√x)))Σ_(n=0) ^∞  ((((√x))^(2n+1) )/(2n+1)) =(1/( (√x)))ϕ((√(x)))  with ϕ(t) =Σ_(n=0) ^∞  (t^(2n+1) /(2n+1)) we have ϕ^′ (t) =Σ_(n=0) ^∞ t^(2n)  =(1/(1−t^2 )) ⇒  ϕ(t) =∫ (dt/(1−t^2 )) +c =(1/2)∫((1/(1−t))+(1/(1+t)))dt +c =(1/2)ln∣((1+t)/(1−t))∣ +c  ϕ(0) =0 =c ⇒ϕ(t) =(1/2)ln∣((1+t)/(1−t))∣ ⇒Σ_(n=0) ^∞  (x^n /(2n+1)) =(1/(2(√x)))ln∣((1+(√x))/(1−(√x)))∣  Σ_(n=0) ^∞  (x^n /(2n−1)) =−1+  Σ_(n=1) ^∞  (x^n /(2n−1)) =_(n=p+1)  Σ_(p=0) ^∞  (x^(p+1) /(2p+1))  =x ×(1/(2(√x)))ln∣((1+(√x))/(1−(√x)))∣ =((√x)/2) ln∣((1+(√x))/(1−(√x)))∣ ⇒  f(x) =−(1/2)+((√x)/4)ln∣((1+(√x))/(1−(√x)))∣−(1/(4(√x)))ln∣((1+(√x))/(1−(√x)))∣  case(2) if −1<x<0 we have f(x) =(1/2)Σ_(n=0) ^∞  (((−1)^n (−x)^n )/(2n−1))  −(1/2) Σ_(n=0) ^∞  (((−1)^n (−x)^n )/(2n+1)) but    Σ_(n=0) ^∞  (((−1)^n )/(2n+1))(−x)^n  =(1/( (√(−x))))Σ_(n=0) ^∞ (((−1)^n ((√(−x)))^(2n+1) )/(2n+1))  =(1/( (√(−x))))w((√(−x)))  with w(x) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) t^(2n+1)  ⇒  w^′ (x) =Σ_(n=0) ^∞  (−1)^n  t^(2n)  =(1/(1+t^2 )) ⇒w(x) =arctant +c  w(0) =0 =c ⇒w(x) =arctan(t) ⇒Σ_(n=0) ^∞  (x^n /(2n+1)) =(1/( (√(−x))))arctan((√(−x)))  wf follow the same way to find Σ_(n=0) ^∞  (x^n /(2n−1)) ....
1)letf(x)=n=0xn4n21f(x)=n=0xn(2n1)(2n+1)=12n=0(12n112n+1)xn=12n=0xn2n112n=0xn2n+1case(1)0<x<1n=0xn2n+1=1xn=0(x)2n+12n+1=1xφ(x)withφ(t)=n=0t2n+12n+1wehaveφ(t)=n=0t2n=11t2φ(t)=dt1t2+c=12(11t+11+t)dt+c=12ln1+t1t+cφ(0)=0=cφ(t)=12ln1+t1tn=0xn2n+1=12xln1+x1xn=0xn2n1=1+n=1xn2n1=n=p+1p=0xp+12p+1=x×12xln1+x1x=x2ln1+x1xf(x)=12+x4ln1+x1x14xln1+x1xcase(2)if1<x<0wehavef(x)=12n=0(1)n(x)n2n112n=0(1)n(x)n2n+1butn=0(1)n2n+1(x)n=1xn=0(1)n(x)2n+12n+1=1xw(x)withw(x)=n=0(1)n2n+1t2n+1w(x)=n=0(1)nt2n=11+t2w(x)=arctant+cw(0)=0=cw(x)=arctan(t)n=0xn2n+1=1xarctan(x)wffollowthesamewaytofindn=0xn2n1.
Answered by mathmax by abdo last updated on 19/May/20
2) let S_n =Σ_(k=0) ^n  (1/(4k^2 −1)) ⇒S_n =−1 +Σ_(k=1) ^n  (1/((2k−1)(2k+1)))  =−1+(1/2)Σ_(k=1) ^n  ((1/(2k−1))−(1/(2k+1))) =−1+(1/2)Σ_(k=1) ^n  (1/(2k−1))−(1/2)Σ_(k=1) ^n  (1/(2k+1))  Σ_(k=1) ^n  (1/(2k−1)) =1+(1/3)+.....+(1/(2n−1)) =1+(1/2)+(1/3)+....+(1/(2n−1))+(1/(2n))  −(1/2)−(1/4)−...−(1/(2n)) =H_(2n) −(1/2)H_n   Σ_(k=1) ^n  (1/(2k+1)) =_(k=p−1)   Σ_(p=2) ^(n+1)  (1/(2p−1)) =H_(2n+2) −(1/2)H_(n+1) −1 ⇒  S_n =−1+(1/2)H_(2n) −(1/4)H_n −(1/2)H_(2n+2) +(1/4)H_(n+1) +(1/2)  =−(1/2) +(1/2)(H_(2n) −H_(2n+2) )+(1/4)(H_(n+1) −H_n )  but   lim_(n⌣+∞) H_(2n) −H_(2n+2) =0 =lim_(n→∞) H_(n+1) −H_n  ⇒  lim_(n→+∞)  S_n =−(1/2)
2)letSn=k=0n14k21Sn=1+k=1n1(2k1)(2k+1)=1+12k=1n(12k112k+1)=1+12k=1n12k112k=1n12k+1k=1n12k1=1+13+..+12n1=1+12+13+.+12n1+12n121412n=H2n12Hnk=1n12k+1=k=p1p=2n+112p1=H2n+212Hn+11Sn=1+12H2n14Hn12H2n+2+14Hn+1+12=12+12(H2nH2n+2)+14(Hn+1Hn)butlimn+H2nH2n+2=0=limnHn+1Hnlimn+Sn=12

Leave a Reply

Your email address will not be published. Required fields are marked *