1-calculate-n-0-x-n-4n-2-1-with-x-lt-1-2-find-the-value-of-n-0-1-4n-2-1-and-n-0-1-n-4n-2-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 94331 by mathmax by abdo last updated on 18/May/20 1)calculate∑n=0∞xn4n2−1with∣x∣<12)findthevalueof∑n=0∞14n2−1and∑n=0∞(−1)n4n2−1 Answered by mathmax by abdo last updated on 19/May/20 1)letf(x)=∑n=0∞xn4n2−1⇒f(x)=∑n=0∞xn(2n−1)(2n+1)=12∑n=0∞(12n−1−12n+1)xn=12∑n=0∞xn2n−1−12∑n=0∞xn2n+1case(1)0<x<1⇒∑n=0∞xn2n+1=1x∑n=0∞(x)2n+12n+1=1xφ(x)withφ(t)=∑n=0∞t2n+12n+1wehaveφ′(t)=∑n=0∞t2n=11−t2⇒φ(t)=∫dt1−t2+c=12∫(11−t+11+t)dt+c=12ln∣1+t1−t∣+cφ(0)=0=c⇒φ(t)=12ln∣1+t1−t∣⇒∑n=0∞xn2n+1=12xln∣1+x1−x∣∑n=0∞xn2n−1=−1+∑n=1∞xn2n−1=n=p+1∑p=0∞xp+12p+1=x×12xln∣1+x1−x∣=x2ln∣1+x1−x∣⇒f(x)=−12+x4ln∣1+x1−x∣−14xln∣1+x1−x∣case(2)if−1<x<0wehavef(x)=12∑n=0∞(−1)n(−x)n2n−1−12∑n=0∞(−1)n(−x)n2n+1but∑n=0∞(−1)n2n+1(−x)n=1−x∑n=0∞(−1)n(−x)2n+12n+1=1−xw(−x)withw(x)=∑n=0∞(−1)n2n+1t2n+1⇒w′(x)=∑n=0∞(−1)nt2n=11+t2⇒w(x)=arctant+cw(0)=0=c⇒w(x)=arctan(t)⇒∑n=0∞xn2n+1=1−xarctan(−x)wffollowthesamewaytofind∑n=0∞xn2n−1…. Answered by mathmax by abdo last updated on 19/May/20 2)letSn=∑k=0n14k2−1⇒Sn=−1+∑k=1n1(2k−1)(2k+1)=−1+12∑k=1n(12k−1−12k+1)=−1+12∑k=1n12k−1−12∑k=1n12k+1∑k=1n12k−1=1+13+…..+12n−1=1+12+13+….+12n−1+12n−12−14−…−12n=H2n−12Hn∑k=1n12k+1=k=p−1∑p=2n+112p−1=H2n+2−12Hn+1−1⇒Sn=−1+12H2n−14Hn−12H2n+2+14Hn+1+12=−12+12(H2n−H2n+2)+14(Hn+1−Hn)butlimn⌣+∞H2n−H2n+2=0=limn→∞Hn+1−Hn⇒limn→+∞Sn=−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-159860Next Next post: Question-159864 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.