Menu Close

1-calculate-R-2-dxdy-1-x-2-1-y-2-2-find-the-value-of-0-ln-x-x-2-1-dx-




Question Number 61661 by maxmathsup by imad last updated on 05/Jun/19
1) calculate ∫∫_R^+^2        ((dxdy)/((1+x^2 )(1+y^2 )))  2) find the value of ∫_0 ^∞  ((ln(x))/(x^2 −1)) dx .
1)calculateR+2dxdy(1+x2)(1+y2)2)findthevalueof0ln(x)x21dx.
Commented by maxmathsup by imad last updated on 07/Jun/19
1) ∫∫_R^+^2       ((dxdy)/((1+x^2 )(1+y^2 ))) =∫_0 ^∞   (dx/(1+x^2 )) .∫_0 ^∞  (dy/(1+y^2 )) =(π/2).(π/2) =(π^2 /4)  2) let A =∫_0 ^∞   ((ln(x))/(x^2 −1)) ⇒−A =∫_0 ^∞   ((ln(x))/(1−x^2 ))dx =∫_0 ^1  ((ln(x))/(1−x^2 ))dx +∫_1 ^(+∞)  ((ln(x))/(1−x^2 )) dx  ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =∫_0 ^1 lnx(Σ_(n=0) ^∞  x^(2n) )dx =Σ_(n=0) ^∞  ∫_0 ^1  x^(2n) ln(x)dx    by parts  ∫_0 ^1  x^(2n) ln(x)dx =[(1/(2n+1))x^(2n+1) ln(x)]_0 ^1  −∫_0 ^1  (1/((2n+1)))x^(2n)  dx  =−(1/((2n+1)^2 )) ⇒∫_0 ^1   ((ln(x))/(1−x^2 ))dx =−Σ_(n=0) ^∞   (1/((2n+1)^2 ))  Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞   (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4)(π^2 /6) =(π^2 /8) ⇒  ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =−(π^2 /8)  ∫_1 ^(+∞)  ((ln(x))/(1−x^2 )) dx =_(x =(1/t))    − ∫_0 ^1    ((−ln(t))/(1−(1/t^2 ))) (−(dt/t^2 )) =−∫_0 ^1  ((ln(t))/(t^2 −1))dt =∫_0 ^1  ((ln(t))/(1−t^2 )) dt =−(π^2 /8) ⇒  −A =−(π^2 /8)−(π^2 /8) ⇒A =(π^2 /4) .
1)R+2dxdy(1+x2)(1+y2)=0dx1+x2.0dy1+y2=π2.π2=π242)letA=0ln(x)x21A=0ln(x)1x2dx=01ln(x)1x2dx+1+ln(x)1x2dx01ln(x)1x2dx=01lnx(n=0x2n)dx=n=001x2nln(x)dxbyparts01x2nln(x)dx=[12n+1x2n+1ln(x)]01011(2n+1)x2ndx=1(2n+1)201ln(x)1x2dx=n=01(2n+1)2n=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34π26=π2801ln(x)1x2dx=π281+ln(x)1x2dx=x=1t01ln(t)11t2(dtt2)=01ln(t)t21dt=01ln(t)1t2dt=π28A=π28π28A=π24.

Leave a Reply

Your email address will not be published. Required fields are marked *