Menu Close

1-calculate-U-n-0-e-n-x-sin-pix-n-dx-nnatural-and-n-1-2-determine-nature-of-U-n-




Question Number 87530 by mathmax by abdo last updated on 04/Apr/20
1) calculate U_n =∫_0 ^∞  e^(−n[x]) sin(((πx)/n))dx  nnatural and n≥1  2)determine nature of Σ U_n
1)calculateUn=0en[x]sin(πxn)dxnnaturalandn12)determinenatureofΣUn
Commented by mathmax by abdo last updated on 05/Apr/20
1) U_n =Σ_(p=0) ^∞  ∫_p ^(p+1)  e^(−np)  sin(((πx)/n))dx  =Σ_(p=0) ^∞  e^(−np)  ∫_p ^(p+1)  sin(((πx)/n))dx   =Σ_(p=0) ^∞  e^(−np)  [−(n/π)cos(((πx)/n))]_p ^(p+1)   =−(n/π)Σ_(p=0) ^∞  e^(−np) { cos((π/n)(p+1)}−cos(((pπ)/n))}  =−(n/π)Σ_(p=0) ^∞  e^(−np)  cos(((π(p+1))/n))+(n/π)Σ_(p=0) ^∞  e^(−np)  cos(((pπ)/n))  we have Σ_(p=0) ^∞  e^(−np)  cos(((pπ)/n)) =Re(Σ_(p=0) ^∞  e^(−np+i((pπ)/n)) )=Re(A_n )  and A_n =Σ_(p=0) ^∞   (e^(−n+((iπ)/n)) )^p   =(1/(1−e^(−n+((iπ)/n)) ))  =(1/(1−e^(−n) {cos((π/n))+isin((π/n))})) =(1/(1−e^(−n)  cos((π/n))−ie^(−n)  sin((π/n))))  =((1−e^(−n)  cos((π/n))+ie^(−n)  sin((π/n)))/((1−e^(−n)  cos((π/n)))^2  +e^(−2n)  sin^2 ((π/n)))) ⇒  A_n =((1−e^(−n)  cos((π/n)))/((1−e^(−n)  cos((π/n)))^2  +e^(−2n)  sin^2 ((π/n))))  Σ_(p=0) ^∞  e^(−np)  cos(((π(p+1))/n)) =Σ_(p=1) ^∞  e^(−n(p−1))  cos(((πp)/n))  =e^n  Σ_(p=1) ^∞  e^(−np)  cos(((πp)/n)) =e^n (Σ_(p=1) ^∞  e^(−np)  cos(((πp)/n))−1)  =e^n (A_n −1) ⇒ U_n =−(n/π)e^n (A_n −1) +(n/π) A_n   ⇒ U_n =(n/π)(1−e^n )A_n  +((ne^n )/π)
1)Un=p=0pp+1enpsin(πxn)dx=p=0enppp+1sin(πxn)dx=p=0enp[nπcos(πxn)]pp+1=nπp=0enp{cos(πn(p+1)}cos(pπn)}=nπp=0enpcos(π(p+1)n)+nπp=0enpcos(pπn)wehavep=0enpcos(pπn)=Re(p=0enp+ipπn)=Re(An)andAn=p=0(en+iπn)p=11en+iπn=11en{cos(πn)+isin(πn)}=11encos(πn)iensin(πn)=1encos(πn)+iensin(πn)(1encos(πn))2+e2nsin2(πn)An=1encos(πn)(1encos(πn))2+e2nsin2(πn)p=0enpcos(π(p+1)n)=p=1en(p1)cos(πpn)=enp=1enpcos(πpn)=en(p=1enpcos(πpn)1)=en(An1)Un=nπen(An1)+nπAnUn=nπ(1en)An+nenπ

Leave a Reply

Your email address will not be published. Required fields are marked *