Menu Close

1-calculate-U-n-0-e-nx-4-dx-and-determine-lim-n-n-4-U-n-2-find-nature-of-the-serie-U-n-




Question Number 99578 by mathmax by abdo last updated on 21/Jun/20
1)calculate  U_n =∫_0 ^∞  e^(−nx^4 ) dx  and determine lim_(n→+∞)  n^4  U_n   2) find nature of the serie Σ U_n
1)calculateUn=0enx4dxanddeterminelimn+n4Un2)findnatureoftheserieΣUn
Answered by maths mind last updated on 22/Jun/20
U_n   let t=nx^4 ⇒dx=(1/n^(1/4) ).(t^(−(3/4)) /4)dt   =(1/(4n^(1/4) ))∫_0 ^(+∞) e^(−t) t^(−(3/4)) dt=((Γ((1/4)))/(4n^(1/4) ))  ⇒n^4 U_n →+∞  ΣU_n  diverge Σ(1/n^a ),a≤1
Unlett=nx4dx=1n14.t344dt=14n140+ett34dt=Γ(14)4n14n4Un+ΣUndivergeΣ1na,a1
Answered by mathmax by abdo last updated on 22/Jun/20
1) U_n =∫_0 ^∞  e^(−n x^4 ) dx  we do the changement nx^4  =t ⇒x^4  =(t/n) ⇒  x =(1/n^(1/4) )t^(1/4)  ⇒ U_n =(1/((^4 (√n))))∫_0 ^∞   e^(−t)  (1/4) t^((1/4)−1)  dt =(1/(4(^4 (√n))))×Γ((1/4))  U_n =(n^(−(1/4)) /4) Γ((1/4)) ⇒n^4  U_n =(n^((15)/4) /4)Γ((1/4))→+∞ (n→∞)  2)Σ_(n=1) ^∞  U_n  =(1/4)Γ((1/4))Σ_(n=1) ^∞  (1/n^(1/4) )  and Σ_(n=1) ^∞  (1/n^(1/4) ) have tbe same nature of  ∫_1 ^(+∞)  (dt/t^(1/4) ) =∫_1 ^(+∞)  t^(−(1/4))  dt =[(1/(−(1/4)+1)) t^(−(1/4)+1) ]_0 ^(+∞)  =[(4/3) t^(3/4) ]_0 ^∞  =+∞ ⇒  Σ u_n  is divergent...
1)Un=0enx4dxwedothechangementnx4=tx4=tnx=1n14t14Un=1(4n)0et14t141dt=14(4n)×Γ(14)Un=n144Γ(14)n4Un=n1544Γ(14)+(n)2)n=1Un=14Γ(14)n=11n14andn=11n14havetbesamenatureof1+dtt14=1+t14dt=[114+1t14+1]0+=[43t34]0=+Σunisdivergent

Leave a Reply

Your email address will not be published. Required fields are marked *