Menu Close

1-calculate-U-n-0-pi-dx-1-cos-2-nx-with-n-from-N-2-f-continue-from-0-pi-to-R-find-lim-n-0-pi-f-x-1-cos-2-nx-dx-




Question Number 50412 by Abdo msup. last updated on 16/Dec/18
1) calculate U_n =∫_0 ^π   (dx/(1+cos^2 (nx))) with n from N  2) f continue from [0,π] to R  find  lim_(n→+∞)  ∫_0 ^π    ((f(x))/(1+cos^2 (nx)))dx
1)calculateUn=0πdx1+cos2(nx)withnfromN2)fcontinuefrom[0,π]toRfindlimn+0πf(x)1+cos2(nx)dx
Commented by Abdo msup. last updated on 25/Dec/18
1)changement nx=t give  U_n =(1/n)∫_0 ^(nπ)   (1/(1+cos^2 t))dt ⇒nU_n =Σ_(k=0) ^(n−1)  ∫_(kπ) ^((k+1)π)  (dt/(1+cos^2 t))  but ∫_(kπ) ^((k+1)π)   (dt/(1+cos^2 t)) =_(t=kπ +x)    ∫_0 ^π     (dx/(1+cos^2 x))  = ∫_0 ^π    (dx/(1+((1+cos(2x))/2))) =∫_0 ^π   ((2dx)/(3+cos(2x)))  =_(2x=u)   ∫_0 ^(2π)     (du/(3+cosu)) du   ⇒nU_n =n ∫_0 ^(2π)    (du/(3+cosu))  ⇒U_n =∫_0 ^(2π)    (du/(3+cos(u)))  changement e^(iu) =z give  U_n = ∫_(∣z∣=1)     (1/(3+((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     ((2dz)/(iz(6+z +z^(−1) )))  =∫_(∣z∣=1)     ((−2idz)/(6z +z^2  +1))  let ϕ(z)=((−2i)/(z^2  +6z +1))  poles of ϕ?  Δ^′ =3^2 −1=8 ⇒z_1 =−3+2(√2)  and z_2 =−3−2(√2)  ∣z_1 ∣−1 =3−2(√2)−1 =2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =3+2(√2)−1=2+2(√2)( z_2 is out of circle)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )   Res(ϕ,z_1 ) = ((−2i)/(z_1 −z_2 )) =((−2i)/(4(√2))) =((−i)/(2(√2))) ⇒  ∫_(∣z∣=1)  ϕ(z)dz =2iπ(((−i)/(2(√2))))=(π/( (√2)))  ⇒ ∀n∈N   U_n =(π/( (√2))) .
1)changementnx=tgiveUn=1n0nπ11+cos2tdtnUn=k=0n1kπ(k+1)πdt1+cos2tbutkπ(k+1)πdt1+cos2t=t=kπ+x0πdx1+cos2x=0πdx1+1+cos(2x)2=0π2dx3+cos(2x)=2x=u02πdu3+cosudunUn=n02πdu3+cosuUn=02πdu3+cos(u)changementeiu=zgiveUn=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z∣=12idz6z+z2+1letφ(z)=2iz2+6z+1polesofφ?Δ=321=8z1=3+22andz2=322z11=3221=222<0⇒∣z1∣<1z21=3+221=2+22(z2isoutofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2iz1z2=2i42=i22z∣=1φ(z)dz=2iπ(i22)=π2nNUn=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *