Menu Close

1-calculate-u-n-0-sin-nx-sh-2x-dx-with-n-integr-natural-2-calculate-n-0-u-n-




Question Number 47064 by maxmathsup by imad last updated on 04/Nov/18
1)calculate  u_n =∫_0 ^∞   ((sin(nx))/(sh(2x)))dx  with  n integr natural  2) calculate Σ_(n=0) ^∞  u_n  .
1)calculateun=0sin(nx)sh(2x)dxwithnintegrnatural2)calculaten=0un.
Commented by maxmathsup by imad last updated on 07/Nov/18
1) we have u_n =∫_0 ^∞   ((2sin(nx))/(e^(2x) −e^(−2x) ))dx =2∫_0 ^∞   ((e^(−2x) sin(nx))/(1−e^(−4x) ))dx  =2 ∫_0 ^∞  e^(−2x) sin(nx)(Σ_(p=0) ^∞  e^(−4px) )ex  =2 Σ_(p=0) ^∞ ∫_0 ^∞  e^(−(2+4p)x) sin(nx)dx  =_((2+4p)x=u)   2 Σ_(p=0) ^∞  ∫_0 ^∞  e^(−u)  sin(n(u/(2+4p)))(du/(2+4p))  =Σ_(p=0) ^∞  (1/(2p+1)) ∫_0 ^∞   e^(−u) sin(((nu)/(4p+2)))du  let determine I_λ =∫_0 ^∞  e^(−u)  sin(λu)du (λ>0)  I_λ =Im(∫_0 ^∞  e^(−u+iλu) du)=Im(∫_0 ^∞   e^((−1+iλ)u) du) but  ∫_0 ^∞   e^((−1+iλ)u) du =[(1/(−1+iλ)) e^((−1+iλ)u) ]_0 ^(+∞)  =((−1)/(−1+iλ)) =(1/(1−iλ)) =((1+iλ)/(1+λ^2 )) ⇒  I_λ =(λ/(1+λ^2 )) ⇒u_n =Σ_(p=0) ^∞  (1/(2p+1)) ((n/((4p+2)(1+((n/(4p+2)))^2 ))))  =Σ_(p=0) ^∞   (n/((2p+1)(4p+2 +(n^2 /(4p+2))))) =Σ_(p=0) ^∞ ((n(4p+2))/((2p+1)((4p+2)^2  +n^2 ))) =Σ_(p=0) ^∞ ((2n)/((4p+2)^2  +n^2 ))  u_n  can be calculated by fourier serie ....be continued....
1)wehaveun=02sin(nx)e2xe2xdx=20e2xsin(nx)1e4xdx=20e2xsin(nx)(p=0e4px)ex=2p=00e(2+4p)xsin(nx)dx=(2+4p)x=u2p=00eusin(nu2+4p)du2+4p=p=012p+10eusin(nu4p+2)duletdetermineIλ=0eusin(λu)du(λ>0)Iλ=Im(0eu+iλudu)=Im(0e(1+iλ)udu)but0e(1+iλ)udu=[11+iλe(1+iλ)u]0+=11+iλ=11iλ=1+iλ1+λ2Iλ=λ1+λ2un=p=012p+1(n(4p+2)(1+(n4p+2)2))=p=0n(2p+1)(4p+2+n24p+2)=p=0n(4p+2)(2p+1)((4p+2)2+n2)=p=02n(4p+2)2+n2uncanbecalculatedbyfourierserie.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *