1-calculate-U-n-0-x-3-2x-1-e-n-x-dx-with-n-integr-natural-and-n-1-2-find-nature-of-U-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 56935 by maxmathsup by imad last updated on 27/Mar/19 1.calculateUn=∫0∞(x3−2x+1)e−n[x]dxwithnintegrnaturalandn⩾12.findnatureofΣUn Commented by maxmathsup by imad last updated on 28/Mar/19 1)wehaveUn=∫0∞x3e−n[x]dx−2∫0∞xe−n[x]dx+∫0∞e−n[x]dx∫0∞e−n[x]dx=∑k=0∞∫kk+1e−nkdx=∑k=0∞(e−n)k=11−e−n∫0∞xe−n[x]dx=∑k=0∞∫kk+1xe−nkdx=∑k=0∞e−nk∫kk+1xdx=12∑k=0∞e−nk{(k+1)2−k2}=12∑k=0∞e−nk{2k+1}=∑k=0∞ke−nk+12∑k=0∞e−nkletw(x)=∑k=0∞xkwith∣x∣<1⇒w(x)=11−x⇒w′(x)=1(1−x)2alsow′(x)=∑k=1∞kxk−1=1(1−x)2⇒∑k=1∞kxk=x(1−x)2⇒∑k=0∞ke−nk=e−n(1−e−n)2⇒∫0∞xe−n[x]dx=e−n(1−e−n)2+12(1−e−n)∫0∞x3e−n[x]dx=∑k=0∞∫kk+1x3e−nkdx=∑k=0∞e−nk14{(k+1)4−k4}=14∑k=0∞e−nk{(k+1)2−k2}{(k+1)2+k2}=14∑k=0∞e−nk{2k+1}{2k2+2k+1}=14∑k=0∞e−nk{4k3+4k2+2k+2k2+2k+1}=14∑k=0∞e−nk{4k3+6k2+4k+1}=∑k=0∞k3e−nk+32∑k=0∞k2e−nk+∑k=0∞ke−nk+14∑k=0∞e−nkwehave∑k=1∞kxk=x(x−1)2⇒∑k=1∞k2xk−1=(x−1)2−2(x−1)x(x−1)4=x−1−2x(x−1)3=−x−1(x−1)3⇒∑k=1∞k2xk=−x2−x(x−1)3=x2+x(1−x)3⇒∑k=0∞k2e−nk=e−2n+e−n(1−e−n)3wehave∑k=1∞k2xk=x2+x(1−x)3⇒∑k=1∞k3xk−1=(2x+1)(1−x)3+3(1−x)2(x2+x)(1−x)6=(2x+1)(1−x)+3x2+3x(1−x)4=2x−2x2+1−x+3x2+3x(x−1)4=x2+4x+1(x−1)4⇒∑k=1∞k3xk=x3+4x2+x(x−1)4⇒∑k=0∞k3e−nk=e−3n+4e−2n+e−n(e−n−1)2⇒thevalueofUnisdetermined. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: I-sin-3-cosx-4-dx-Next Next post: Question-188010 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.