Menu Close

1-calculate-U-n-0-x-3-2x-1-e-n-x-dx-with-n-integr-natural-and-n-1-2-find-nature-of-U-n-




Question Number 56935 by maxmathsup by imad last updated on 27/Mar/19
1. calculate  U_n =∫_0 ^∞   (x^3 −2x+1)e^(−n[x]) dx  with n integr natural and n≥1  2. find nature of Σ U_n
1.calculateUn=0(x32x+1)en[x]dxwithnintegrnaturalandn12.findnatureofΣUn
Commented by maxmathsup by imad last updated on 28/Mar/19
1) we have U_n =∫_0 ^∞ x^3  e^(−n[x]) dx −2 ∫_0 ^∞  x e^(−n[x]) dx +∫_0 ^∞  e^(−n[x]) dx  ∫_0 ^∞  e^(−n[x]) dx =Σ_(k=0) ^∞  ∫_k ^(k+1)  e^(−nk) dx =Σ_(k=0) ^∞  (e^(−n) )^k  =(1/(1−e^(−n) ))  ∫_0 ^∞  x e^(−n[x]) dx =Σ_(k=0) ^∞  ∫_k ^(k+1)  x e^(−nk)  dx =Σ_(k=0) ^∞  e^(−nk)  ∫_k ^(k+1)  xdx  =(1/2) Σ_(k=0) ^∞  e^(−nk) {(k+1)^2 −k^2 } =(1/2) Σ_(k=0) ^∞  e^(−nk) {2k+1}  =Σ_(k=0) ^∞  k e^(−nk)  +(1/2) Σ_(k=0) ^∞  e^(−nk)   let w(x)=Σ_(k=0) ^∞  x^k  with ∣x∣<1 ⇒w(x)=(1/(1−x)) ⇒w^′ (x)=(1/((1−x)^2 ))  also w^′ (x)=Σ_(k=1) ^∞  k x^(k−1)  =(1/((1−x)^2 )) ⇒Σ_(k=1) ^∞  kx^k  =(x/((1−x)^2 )) ⇒  Σ_(k=0) ^∞  k e^(−nk)  =(e^(−n) /((1−e^(−n) )^2 )) ⇒∫_0 ^∞   x e^(−n[x]) dx =(e^(−n) /((1−e^(−n) )^2 )) +(1/(2(1−e^(−n) )))  ∫_0 ^∞  x^3  e^(−n[x]) dx =Σ_(k=0) ^∞  ∫_k ^(k+1)  x^3  e^(−nk)  dx =Σ_(k=0) ^∞  e^(−nk)   (1/4){ (k+1)^4 −k^4 }  =(1/4) Σ_(k=0) ^∞  e^(−nk) {(k+1)^2 −k^2 }{(k+1)^2  +k^2 }  =(1/4) Σ_(k=0) ^∞  e^(−nk) {2k+1}{2k^2  +2k +1}  =(1/4) Σ_(k=0) ^∞  e^(−nk) { 4k^(3 )  +4k^2  +2k +2k^2  +2k+1}  =(1/4)Σ_(k=0) ^∞  e^(−nk) {4k^3  +6k^2  +4k +1}  =Σ_(k=0) ^∞ k^3  e^(−nk)  +(3/2) Σ_(k=0) ^∞  k^2  e^(−nk)  +Σ_(k=0) ^∞  k e^(−nk)  +(1/4) Σ_(k=0) ^∞  e^(−nk)   we have Σ_(k=1) ^∞  kx^k  =(x/((x−1)^2 )) ⇒Σ_(k=1) ^∞ k^2  x^(k−1)  =(((x−1)^2 −2(x−1)x)/((x−1)^4 ))  =((x−1−2x)/((x−1)^3 )) =((−x−1)/((x−1)^3 )) ⇒Σ_(k=1) ^∞  k^2  x^k  =((−x^2 −x)/((x−1)^3 )) =((x^2  +x)/((1−x)^3 )) ⇒  Σ_(k=0) ^∞  k^2  e^(−nk)  =((e^(−2n)  +e^(−n) )/((1−e^(−n) )^3 ))  we have Σ_(k=1) ^∞  k^2  x^k  =((x^2  +x)/((1−x)^3 )) ⇒Σ_(k=1) ^∞  k^3  x^(k−1)  =(((2x+1)(1−x)^3  +3(1−x)^2 (x^2  +x))/((1−x)^6 ))  =(((2x+1)(1−x) +3x^2  +3x)/((1−x)^4 )) =((2x−2x^2  +1−x +3x^2  +3x)/((x−1)^4 )) =((x^2  +4x +1)/((x−1)^4 )) ⇒  Σ_(k=1) ^∞  k^3  x^k  =((x^3  +4x^2  +x)/((x−1)^4 )) ⇒Σ_(k=0) ^∞  k^3  e^(−nk)  =((e^(−3n)  +4e^(−2n)  +e^(−n) )/((e^(−n)  −1)^2 )) ⇒ the value of  U_n is determined .
1)wehaveUn=0x3en[x]dx20xen[x]dx+0en[x]dx0en[x]dx=k=0kk+1enkdx=k=0(en)k=11en0xen[x]dx=k=0kk+1xenkdx=k=0enkkk+1xdx=12k=0enk{(k+1)2k2}=12k=0enk{2k+1}=k=0kenk+12k=0enkletw(x)=k=0xkwithx∣<1w(x)=11xw(x)=1(1x)2alsow(x)=k=1kxk1=1(1x)2k=1kxk=x(1x)2k=0kenk=en(1en)20xen[x]dx=en(1en)2+12(1en)0x3en[x]dx=k=0kk+1x3enkdx=k=0enk14{(k+1)4k4}=14k=0enk{(k+1)2k2}{(k+1)2+k2}=14k=0enk{2k+1}{2k2+2k+1}=14k=0enk{4k3+4k2+2k+2k2+2k+1}=14k=0enk{4k3+6k2+4k+1}=k=0k3enk+32k=0k2enk+k=0kenk+14k=0enkwehavek=1kxk=x(x1)2k=1k2xk1=(x1)22(x1)x(x1)4=x12x(x1)3=x1(x1)3k=1k2xk=x2x(x1)3=x2+x(1x)3k=0k2enk=e2n+en(1en)3wehavek=1k2xk=x2+x(1x)3k=1k3xk1=(2x+1)(1x)3+3(1x)2(x2+x)(1x)6=(2x+1)(1x)+3x2+3x(1x)4=2x2x2+1x+3x2+3x(x1)4=x2+4x+1(x1)4k=1k3xk=x3+4x2+x(x1)4k=0k3enk=e3n+4e2n+en(en1)2thevalueofUnisdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *