Menu Close

1-calculate-x-2-x-2-x-2-x-1-dx-2-find-the-value-of-0-1-x-2-x-2-x-2-x-1-dx-




Question Number 63722 by mathmax by abdo last updated on 08/Jul/19
1) calculate ∫ (x^2 −x+2)(√(x^2 −x+1))dx  2)find the value of ∫_0 ^1 (x^2 −x+2)(√(x^2 −x +1))dx .
1)calculate(x2x+2)x2x+1dx2)findthevalueof01(x2x+2)x2x+1dx.
Commented by Prithwish sen last updated on 08/Jul/19
1) putting x^2 −x+1 = u^2   ⇒ (2x−1)dx = 2udu     and  (2x−1) = ±(√(4u−3.))  = ±2∫((u^2 (u+1) du)/( (√(4u−3))))  putting 4u−3 = t^2 ⇒2du = tdt  = (1/(64))∫(t^2 +3)^2 (t^2 +7)dt  = (1/(448))(4(√(x^2 −x+1)) −3)^(7/2) +((13)/(320))(4(√(x^2 −x+1))−3)^(5/2) +((15)/(192))(4(√(x^2 −x+1 ))−3)^(3/2) +((63)/(64))(4(√(x^2 −x+1))−3) +C  please check.
1)puttingx2x+1=u2(2x1)dx=2uduand(2x1)=±4u3.=±2u2(u+1)du4u3putting4u3=t22du=tdt=164(t2+3)2(t2+7)dt=1448(4x2x+13)72+13320(4x2x+13)52+15192(4x2x+13)32+6364(4x2x+13)+Cpleasecheck.
Commented by MJS last updated on 08/Jul/19
something went wrong  you can put t=(√(x^2 −x+1)) → dx=2dt((√(x^2 −x+1))/(2x−1)); x=((1+(√(4t^2 −3)))/)  ⇒ 2∫((t^2 (t^2 +1))/( (√(4t^2 −3))))  or you can put t=x^2 −x+1 → dx=(dt/(2x−1)); x=((1+(√(4u−3)))/2)  ⇒ ∫(((√t)(t+1))/( (√(4t−3))))
somethingwentwrongyoucanputt=x2x+1dx=2dtx2x+12x1;x=1+4t232t2(t2+1)4t23oryoucanputt=x2x+1dx=dt2x1;x=1+4u32t(t+1)4t3
Commented by Prithwish sen last updated on 08/Jul/19
thank you sir. I will check it.
thankyousir.Iwillcheckit.
Commented by mathmax by abdo last updated on 08/Jul/19
1) let I =∫ (x^2 −x+2)(√(x^2 −x+1))dx we have  x^2 −x +1 =x^2 −2(1/2)x +(1/4) +1−(1/4) =(x−(1/2))^2  +(3/4)  so we use the  changement x−(1/2) =((√3)/2)sh(t) ⇒  ⇒ I = ∫ ( ((1/2)+((√3)/2)sh(t))^2 −((1/2)+((√3)/2)sh(t)) +2)((√3)/2)ch(t)dt  =((√3)/2)∫  { (1/4)(1+2(√3)sh(t) +3sh^2 (t)−((√3)/2)sh(t)+2−(1/2))ch(t)dt  =((√3)/2) ∫   { ((√3)/2)sh(t) +(3/4)sh^2 (t)−((√3)/2)sh(t) +(7/4)}ch(t)dt  =((3(√3))/8) ∫ sh(t)ch(t)dt +((7(√3))/8) ∫ ch(t)dt  =((3(√3))/(16))sh^2 (t) +((7(√3))/8) sh(t) +c   =((3(√3))/(16))((ch(2t)−1)/2) +((7(√3))/8)sh(t) +c  =((3(√3))/(32)){ ch(2t)−1} +((7(√3))/8)sh(t) +c .  we have t =argsh(((2x−1)/( (√3)))) =ln(((2x−1)/( (√3))) +(√(1+(((2x−1)/( (√3))))^2 )))  ch(2t) =((e^(2t)  +e^(−2t) )/2) =(1/2){(((2x−1)/( (√3))) +(√(1+(((2x−1)/( (√3))))^2 )))^2 +(1/((((2x−1)/( (√3)))+(√(1+(((2x−1)/( (√3)))))^2 ))))}  sh(t) =((e^t −e^(−t) )/2) =(1/2){ ((2x−1)/( (√3)))+(√(1+(((2x−1)/( (√3))))))^2 − (1/(((2x−1)/( (√3)))+(√(1+(((2x−1)/( (√3))))))^2 ))}  so the value of I is known.
1)letI=(x2x+2)x2x+1dxwehavex2x+1=x2212x+14+114=(x12)2+34soweusethechangementx12=32sh(t)I=((12+32sh(t))2(12+32sh(t))+2)32ch(t)dt=32{14(1+23sh(t)+3sh2(t)32sh(t)+212)ch(t)dt=32{32sh(t)+34sh2(t)32sh(t)+74}ch(t)dt=338sh(t)ch(t)dt+738ch(t)dt=3316sh2(t)+738sh(t)+c=3316ch(2t)12+738sh(t)+c=3332{ch(2t)1}+738sh(t)+c.wehavet=argsh(2x13)=ln(2x13+1+(2x13)2)ch(2t)=e2t+e2t2=12{(2x13+1+(2x13)2)2+1(2x13+1+(2x13))2}sh(t)=etet2=12{2x13+1+(2x13)212x13+1+(2x13)2}sothevalueofIisknown.
Commented by mathmax by abdo last updated on 08/Jul/19
2) ∫_0 ^1 (x^2 −x+2)(√(x^2 −x+1))dx =[F(x)]_0 ^1 =F(1)−F(0)  F(1)=((3(√3))/(32)){(1/2)((1/( (√3))) +(√(1+(1/3))))^2   +(1/(((1/( (√3)))+(√(1+(1/3))))^2 ))}−1}  +((7(√3))/(16)){ (1/( (√3))) +(√(1+(1/3))) −(1/((1/( (√3)))+(√(1+(1/3)))))}  F(0) =((3(√3))/(32)){(−(1/3) +(√(1+(1/3))))^2  +(1/((−(1/3) +(√(1+(1/3))))^2 ))}  +((7(√3))/(16)){−(1/( (√3))) +(√(1+(1/3)))−(1/(−(1/( (√3)))+(√(1+(1/3)))))}
2)01(x2x+2)x2x+1dx=[F(x)]01=F(1)F(0)F(1)=3332{12(13+1+13)2+1(13+1+13)2}1}+7316{13+1+13113+1+13}F(0)=3332{(13+1+13)2+1(13+1+13)2}+7316{13+1+13113+1+13}
Commented by mathmax by abdo last updated on 08/Jul/19
F(0) =((3(√3))/(32)){ (−(1/( (√3))) +(2/( (√3))))^2  +(1/((−(1/( (√3)))+(2/( (√3))))^2 ))}+((7(√3))/(16)){−(1/( (√3))) +(2/( (√3)))  −(1/(−(1/( (√3)))+(2/( (√3)))))} =((3(√3))/(32)){  (1/3) +3}+((7(√3))/(16)){ (1/( (√3))) −(√3)}
F(0)=3332{(13+23)2+1(13+23)2}+7316{13+23113+23}=3332{13+3}+7316{133}
Answered by MJS last updated on 08/Jul/19
∫(x^2 −x+2)(√(x^2 −x+1))dx=       [t=sinh^(−1)  (((√3)(2x−1))/3) → dx=(√(x^2 −x+1))dt]  =((75)/(128))∫dt+(9/(128))∫cosh 4t dt+((21)/(32))∫cosh 2t dt=  =((75)/(128))t+(9/(512))sinh 4t +((21)/(64))sinh 2t=  =((75)/(128))sinh^(−1)  (((√3)(2x−1))/3) +(1/(64))(2x−1)(8x^2 −8x+5)(√(x^2 −x+1)) +(7/(16))(2x−1)(√(x^2 −x+1))=  =((75)/(128))sinh^(−1)  (((√3)(2x−1))/3) +(1/(64))(2x−1)(8x^2 −8x+33)(√(x^2 −x+1)) +C    ∫_0 ^1 (x^2 −x+2)(√(x^2 −x+1))dx=((33)/(32))+((75)/(64))sinh^(−1)  ((√3)/3) =((33)/(32))+((75)/(128))ln 3
(x2x+2)x2x+1dx=[t=sinh13(2x1)3dx=x2x+1dt]=75128dt+9128cosh4tdt+2132cosh2tdt==75128t+9512sinh4t+2164sinh2t==75128sinh13(2x1)3+164(2x1)(8x28x+5)x2x+1+716(2x1)x2x+1==75128sinh13(2x1)3+164(2x1)(8x28x+33)x2x+1+C10(x2x+2)x2x+1dx=3332+7564sinh133=3332+75128ln3
Commented by Prithwish sen last updated on 08/Jul/19
sir please check mine.I have just try it   another way.
sirpleasecheckmine.Ihavejusttryitanotherway.
Commented by mathmax by abdo last updated on 08/Jul/19
thank you sir mjs.
thankyousirmjs.

Leave a Reply

Your email address will not be published. Required fields are marked *