Question Number 112449 by mathmax by abdo last updated on 07/Sep/20

Commented by MJS_new last updated on 08/Sep/20

Commented by MJS_new last updated on 08/Sep/20
Here's a better place to answer you. I'm well and I hope you're well, too. Nice to be in here again.
Commented by abdomsup last updated on 08/Sep/20

Answered by mathmax by abdo last updated on 08/Sep/20

Answered by MJS_new last updated on 08/Sep/20
![(1/((x^2 −ix+1)^2 ))= =((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))−((2x(x^2 +1))/((x^4 +3x^2 +1)^2 ))i ⇒ the imaginary part is uneven ⇒ ∫_(−a) ^(+a) (dx/((x^2 −ix+1)^2 ))=∫_(−a) ^(+a) ((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx ∫((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx= [Ostrogradski] =((x(2x^2 +3))/(5(x^4 +3x^2 +1)))+(2/5)∫((x^2 +1)/(x^4 +3x^2 +1))dx ∫((x^2 +1)/(x^4 +3x^2 +1))dx= =((5+(√5))/(10))∫(dx/(x^2 +((3+(√5))/2)))+((5−(√5))/(10))∫(dx/(x^2 +((3−(√5))/2)))= =((√5)/5)(−arctan (((1−(√5))x)/2) +arctan (((1+(√5))x)/2)) ⇒ ∫((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx= =((x(2x^2 +3))/(5(x^4 +3x^2 +1)))+((2(√5))/(25))(arctan (((1+(√5))x)/2) −arctan (((1−(√5))x)/2))+C ⇒ ∫_(−∞) ^(+∞) (dx/((x^2 −ix+1)^2 ))=∫_(−∞) ^(+∞) ((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx= =((4π(√5))/(25))](https://www.tinkutara.com/question/Q112504.png)
Commented by mathmax by abdo last updated on 08/Sep/20

Answered by mathmax by abdo last updated on 08/Sep/20
