Menu Close

1-calculste-A-dx-x-2-ix-1-2-2-extract-Re-A-and-Im-A-and-determines-its-values-




Question Number 112449 by mathmax by abdo last updated on 07/Sep/20
1)calculste  A=∫_(−∞) ^(+∞)  (dx/((x^2 −ix +1)^2 ))  2) extract Re(A) and Im(A) and determines its values
1)calculsteA=+dx(x2ix+1)22)extractRe(A)andIm(A)anddeterminesitsvalues
Commented by MJS_new last updated on 08/Sep/20
I get A=((4π(√5))/(25)) can this be true?
IgetA=4π525canthisbetrue?
Commented by MJS_new last updated on 08/Sep/20
Here's a better place to answer you. I'm well and I hope you're well, too. Nice to be in here again.
Commented by abdomsup last updated on 08/Sep/20
you are welcome sir wish you   happy return ..i havent the value  of this integral but wait my answer  soon....
youarewelcomesirwishyouhappyreturn..ihaventthevalueofthisintegralbutwaitmyanswersoon.
Answered by mathmax by abdo last updated on 08/Sep/20
1) A =∫_(−∞) ^(+∞)  (dx/((x^2 −ix +1)^2 ))  let ϕ(z) =(1/((z^2 −iz +1)^2 ))  poles of ϕ?  z^2 −iz +1 =0 →Δ =(−i)^2 −4 =−5 ⇒z_1 =((i+i(√5))/2) and z_2 =((i−i(√5))/2)  ⇒ϕ(z) =(1/((z−z_1 )^2 (z−z_2 )^2 ))  residus tbeorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  and   Res(ϕ,z_1 ) =lim_(z→z_1 )    (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )    {(1/((z−z_2 )^2 ))}^((1))  =−lim_(z→z_1 )     ((2(z−z_2 ))/((z−z_2 )^4 ))  =lim_(z→z_1 )    ((−2)/((z−z_2 )^3 )) =((−2)/((z_1 −z_2 )^3 )) =((−2)/((i(√5))^3 )) =((−2)/(−i5(√5))) =(2/(5i(√5))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z) dz =2iπ×(2/(5i(√5))) =((4π)/(5(√5))) ⇒★ A =((4π)/(5(√5)))★
1)A=+dx(x2ix+1)2letφ(z)=1(z2iz+1)2polesofφ?z2iz+1=0Δ=(i)24=5z1=i+i52andz2=ii52φ(z)=1(zz1)2(zz2)2residustbeoremgive+φ(z)dz=2iπRes(φ,z1)andRes(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{1(zz2)2}(1)=limzz12(zz2)(zz2)4=limzz12(zz2)3=2(z1z2)3=2(i5)3=2i55=25i5+φ(z)dz=2iπ×25i5=4π55A=4π55
Answered by MJS_new last updated on 08/Sep/20
(1/((x^2 −ix+1)^2 ))=  =((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))−((2x(x^2 +1))/((x^4 +3x^2 +1)^2 ))i  ⇒ the imaginary part is uneven  ⇒ ∫_(−a) ^(+a)  (dx/((x^2 −ix+1)^2 ))=∫_(−a) ^(+a)  ((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx  ∫((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx=       [Ostrogradski]  =((x(2x^2 +3))/(5(x^4 +3x^2 +1)))+(2/5)∫((x^2 +1)/(x^4 +3x^2 +1))dx  ∫((x^2 +1)/(x^4 +3x^2 +1))dx=  =((5+(√5))/(10))∫(dx/(x^2 +((3+(√5))/2)))+((5−(√5))/(10))∫(dx/(x^2 +((3−(√5))/2)))=  =((√5)/5)(−arctan (((1−(√5))x)/2) +arctan (((1+(√5))x)/2))  ⇒  ∫((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx=  =((x(2x^2 +3))/(5(x^4 +3x^2 +1)))+((2(√5))/(25))(arctan (((1+(√5))x)/2) −arctan (((1−(√5))x)/2))+C  ⇒  ∫_(−∞) ^(+∞)  (dx/((x^2 −ix+1)^2 ))=∫_(−∞) ^(+∞) ((x^4 +x^2 +1)/((x^4 +3x^2 +1)^2 ))dx=  =((4π(√5))/(25))
1(x2ix+1)2==x4+x2+1(x4+3x2+1)22x(x2+1)(x4+3x2+1)2itheimaginarypartisuneven+aadx(x2ix+1)2=+aax4+x2+1(x4+3x2+1)2dxx4+x2+1(x4+3x2+1)2dx=[Ostrogradski]=x(2x2+3)5(x4+3x2+1)+25x2+1x4+3x2+1dxx2+1x4+3x2+1dx==5+510dxx2+3+52+5510dxx2+352==55(arctan(15)x2+arctan(1+5)x2)x4+x2+1(x4+3x2+1)2dx==x(2x2+3)5(x4+3x2+1)+2525(arctan(1+5)x2arctan(15)x2)+C+dx(x2ix+1)2=+x4+x2+1(x4+3x2+1)2dx==4π525
Commented by mathmax by abdo last updated on 08/Sep/20
thank you sir M^j S
thankyousirMjS
Answered by mathmax by abdo last updated on 08/Sep/20
A =∫_(−∞) ^(+∞)  (dx/((x^2 −ix +1)^2 )) =∫_(−∞) ^(+∞)   (((x^2 +1+ix)^2 )/((x^2  +1−ix)^2 (x^2  +1+ix)^2 ))dx  =∫_(−∞) ^(+∞)    (((x^2  +1)^2 +2ix(x^2  +1)−x^2 )/({(x^2  +1)^2 +x^2 }^2 ))dx  =∫_(−∞) ^(+∞)  ((x^4  +2x^2  +1 +2ix^3  +2ix −x^2 )/((x^4  +2x^2  +1 +x^2 )^2 ))dx  =∫_(−∞) ^(+∞)  ((x^4 +x^2 +1 +i(2x^3  +2x))/((x^4 +3x^2  +1)^2 ))dx ⇒  Re(A) =∫_(−∞) ^(+∞)  ((x^4  +x^2  +1)/((x^4  +3x^2  +1)^2 )) dx  and Im(A) =∫_(−∞) ^(+∞) ((2x^3  +2x)/((x^4  +3x^2  +1)^2 ))dx  we conclude that Res(A)=((4π)/(5(√5))) and Im(A)=0
A=+dx(x2ix+1)2=+(x2+1+ix)2(x2+1ix)2(x2+1+ix)2dx=+(x2+1)2+2ix(x2+1)x2{(x2+1)2+x2}2dx=+x4+2x2+1+2ix3+2ixx2(x4+2x2+1+x2)2dx=+x4+x2+1+i(2x3+2x)(x4+3x2+1)2dxRe(A)=+x4+x2+1(x4+3x2+1)2dxandIm(A)=+2x3+2x(x4+3x2+1)2dxweconcludethatRes(A)=4π55andIm(A)=0

Leave a Reply

Your email address will not be published. Required fields are marked *