Menu Close

1-cos-ax-dx-sin-ax-b-2-D-3-2D-2-D-y-e-2x-x-2-x-3-the-area-between-the-curves-y-2-x-and-y-x-3-




Question Number 102066 by bramlex last updated on 06/Jul/20
(1)∫ ((cos (ax) dx)/( (√(sin ax−b))))  (2) (D^3 +2D^2 +D)y = e^(2x) +x^2 −x  (3)the area between the curves  y = (2/x) and y = −x+3
(1)cos(ax)dxsinaxb(2)(D3+2D2+D)y=e2x+x2x(3)theareabetweenthecurvesy=2xandy=x+3
Answered by bemath last updated on 06/Jul/20
(1)∫((cos (ax) dx)/( (√(sin ax−b)))) =(1/a)∫ ((d(sin ax−b))/( (√(sin ax−b))))  = (2/a)(√(sin ax−b)) + C
(1)cos(ax)dxsinaxb=1ad(sinaxb)sinaxb=2asinaxb+C
Answered by PRITHWISH SEN 2 last updated on 06/Jul/20
3)  the intersection point (2,1) and (1,2)  ∴ the area between the curves  ∫_1 ^2 (−x+3)dx−∫_1 ^2 (2/x)dx =(3/2)−ln4   please check
3)theintersectionpoint(2,1)and(1,2)theareabetweenthecurves12(x+3)dx122xdx=32ln4pleasecheck
Answered by Dwaipayan Shikari last updated on 06/Jul/20
(2/x)=−x+3  x^2 −3x+2=0  x=1or2  point of intersecting (1,2) , (2,1)  ∫_1 ^2 (2/x)+x−3  2log2+(3/2)−3=∣2log2−(3/2)∣=(3/2)−2log2
2x=x+3x23x+2=0x=1or2pointofintersecting(1,2),(2,1)122x+x32log2+323=∣2log232∣=322log2

Leave a Reply

Your email address will not be published. Required fields are marked *