Question Number 36738 by MJS last updated on 04/Jun/18
$$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$
Commented by behi83417@gmail.com last updated on 05/Jun/18
$${sin}\mathrm{2}\alpha=\frac{{e}^{\mathrm{2}\alpha} −{e}^{−\mathrm{2}\alpha} }{\mathrm{2}{i}}=\frac{{e}^{\mathrm{4}\alpha} −\mathrm{1}}{\mathrm{2}{ie}^{\mathrm{2}\alpha} }=\frac{{x}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{ix}^{\mathrm{2}} } \\ $$$$\Rightarrow{I}=\int\frac{{dx}}{\left(\mathrm{1}+\frac{{x}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{ix}^{\mathrm{2}} }\right)^{\mathrm{2}} }=\int\frac{−\mathrm{4}{x}^{\mathrm{4}} {dx}}{\left({x}^{\mathrm{4}} +\mathrm{2}{ix}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=\int\frac{−\mathrm{4}{x}^{\mathrm{4}} {dx}}{\left({x}^{\mathrm{2}} +{i}\right)^{\mathrm{4}} }=−\mathrm{4}\int\frac{{dx}}{\left({x}+\frac{{i}}{{x}}\right)^{\mathrm{4}} }=…. \\ $$
Commented by abdo.msup.com last updated on 05/Jun/18
$$\left.\mathrm{1}\right)\:{I}\:=\:\int\:\:\:\frac{{dx}}{\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} } \\ $$$$=_{\mathrm{2}{x}={t}} \:\:\:\int\:\:\:\:\frac{\mathrm{1}}{\left(\:\mathrm{1}+{sint}\right)^{\mathrm{2}} }\:\frac{{dt}}{\mathrm{2}} \\ $$$$\mathrm{2}{I}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}\:} \:\int\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+\:\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\int\:\:\:\:\frac{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{2}{u}\right)^{\mathrm{2}} }\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:\int\:\:\:\:\:\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\left({u}+\mathrm{1}\right)^{\mathrm{4}} }{du}\:{let}\:{decompose} \\ $$$$\:=_{{u}+\mathrm{1}\:={x}} \:\mathrm{2}\:\int\:\:\:\:\frac{\mathrm{1}+\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{4}} }{dx} \\ $$$$=\mathrm{2}\:\int\:\:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{4}} }{dx} \\ $$$${I}\:=\:\int\:\left(\:\frac{\mathrm{2}}{{x}^{\mathrm{4}} }\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\right){dx} \\ $$$$=\mathrm{2}.\frac{\mathrm{1}}{−\mathrm{4}+\mathrm{1}}{x}^{−\mathrm{4}+\mathrm{1}} \:\:−\frac{\mathrm{1}}{{x}}\:−\mathrm{2}\:\frac{\mathrm{1}}{−\mathrm{3}+\mathrm{1}}{x}^{−\mathrm{3}+\mathrm{1}} \:+{c} \\ $$$$=\frac{−\mathrm{2}}{\mathrm{3}{x}^{\mathrm{3}} }\:−\frac{\mathrm{1}}{{x}}\:\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+{c} \\ $$$$=\:\frac{−\mathrm{2}}{\mathrm{3}\left({u}+\mathrm{1}\right)^{\mathrm{3}} }\:−\frac{\mathrm{1}}{{u}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }\:+{c} \\ $$$$=\:\frac{−\mathrm{2}}{\mathrm{3}\left(\:\mathrm{1}+{tanx}\right)^{\mathrm{3}} }\:−\frac{\mathrm{1}}{\mathrm{1}+{tanx}}\:+\frac{\mathrm{1}}{\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} }\:+{c} \\ $$
Commented by abdo.msup.com last updated on 05/Jun/18
$$\left.\mathrm{3}\right)\:{let}\:{I}\:=\:\int\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)\left(\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)\right)} \\ $$$${I}\:=_{\mathrm{2}{x}={t}\:} \:\int\:\:\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{sint}\right)\left(\mathrm{1}+{cost}\right)}\:\frac{{dt}}{\mathrm{2}} \\ $$$$\mathrm{2}{I}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\:\int\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\:\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\:\frac{\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)\left(\:\frac{\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$${I}\:=\:\int\:\:\:\:\:\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\mathrm{2}\left({u}+\mathrm{1}\right)^{\mathrm{2}} }\:{du} \\ $$$$\mathrm{2}{I}\:=_{{u}+\mathrm{1}\:={x}} \:\:\:\int\:\:\:\frac{\mathrm{1}+\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\int\:\frac{\mathrm{1}+{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:+\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\int\:\:\left(\:\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\:\:+\mathrm{1}\:\:−\frac{\mathrm{2}}{{x}}\right){dx} \\ $$$$=−\frac{\mathrm{2}}{{x}}\:+{x}\:−\mathrm{2}{ln}\mid{x}\mid\:+{c} \\ $$$$=−\frac{\mathrm{2}}{{u}+\mathrm{1}}\:+{u}+\mathrm{1}\:−\mathrm{2}{ln}\mid{u}+\mathrm{1}\mid\:+{c} \\ $$$$=\:−\frac{\mathrm{2}}{\mathrm{1}+{tan}\left({x}\right)}\:\:+\:\mathrm{1}+{tan}\left({x}\right)\:−\mathrm{2}{ln}\mid\mathrm{1}+{tanx}\mid\:+{c} \\ $$$${I}\:=\:\frac{−\mathrm{1}}{\mathrm{1}+{tanx}}\:+\frac{\mathrm{1}}{\mathrm{2}}{tanx}\:−{ln}\mid\mathrm{1}+{tanx}\mid\:+\lambda \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
$$\left.\mathrm{3}\right){t}={tan}\gamma\:\:\:{dt}={sec}^{\mathrm{2}} \gamma{d}\gamma \\ $$$$\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }={d}\gamma \\ $$$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$\int\frac{\mathrm{1}+{t}^{\mathrm{2}} \:{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)\left(\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{dt}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{t}+\mathrm{2}−\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{dt}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}}+\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)+\frac{\left(\mathrm{1}+{t}\right)^{−\mathrm{1}} }{−\mathrm{1}}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{tan}\gamma−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{ln}\left(\mathrm{1}+{t}\right)−\frac{\mathrm{1}}{\mathrm{1}+{t}}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{tan}\gamma−{ln}\left(\mathrm{1}+{tan}\gamma\right)−\frac{\mathrm{1}}{\mathrm{1}+{tan}\gamma}+{c} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
$$\left.\mathrm{1}\right){tan}\alpha={t}\:\:{dt}={sec}^{\mathrm{2}} \alpha{d}\alpha \\ $$$${d}\alpha=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{\mathrm{2}} } \\ $$$$\int\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{2}{t}−\mathrm{2}+\mathrm{2}}{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}}−\int\frac{{d}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{\mathrm{2}} }+\mathrm{2}\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{4}} } \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }−\int\frac{{d}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{\mathrm{2}} }+\mathrm{2}\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{4}} } \\ $$$$=\frac{\left(\mathrm{1}+{t}\right)^{−\mathrm{1}} }{−\mathrm{1}}−\frac{\left(\mathrm{1}+\mathrm{2}{t}+{t}^{\mathrm{2}} \right)^{−\mathrm{1}} }{−\mathrm{1}}+\mathrm{2}\frac{\left(\mathrm{1}+{t}\right)^{−\mathrm{3}} }{−\mathrm{3}}+{c} \\ $$$$=\frac{−\mathrm{1}}{\left(\mathrm{1}+{tan}\alpha\right)}+\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{2}{tan}\alpha+{tan}^{\mathrm{2}} \alpha\right)}−\frac{\mathrm{2}}{\mathrm{3}\left(\mathrm{1}+{tan}\alpha\right)^{\mathrm{3}} } \\ $$$$ \\ $$