Menu Close

1-D-2-2-sin-2x-




Question Number 92510 by john santu last updated on 07/May/20
(1/(D^2 +2)) (sin 2x) ?
$$\frac{\mathrm{1}}{\mathrm{D}^{\mathrm{2}} +\mathrm{2}}\:\left(\mathrm{sin}\:\mathrm{2x}\right)\:?\: \\ $$
Commented by john santu last updated on 08/May/20
consider y_p  = xsin 2x  D(xsin 2x)= sin 2x+2xcos 2x  D^2 (xsin 2x) = 2cos 2x+2cos 2x−4xsin 2x
$$\mathrm{consider}\:\mathrm{y}_{\mathrm{p}} \:=\:{x}\mathrm{sin}\:\mathrm{2}{x} \\ $$$${D}\left({x}\mathrm{sin}\:\mathrm{2}{x}\right)=\:\mathrm{sin}\:\mathrm{2}{x}+\mathrm{2}{x}\mathrm{cos}\:\mathrm{2}{x} \\ $$$${D}^{\mathrm{2}} \left({x}\mathrm{sin}\:\mathrm{2}{x}\right)\:=\:\mathrm{2cos}\:\mathrm{2}{x}+\mathrm{2cos}\:\mathrm{2}{x}−\mathrm{4}{x}\mathrm{sin}\:\mathrm{2}{x}\: \\ $$
Answered by niroj last updated on 08/May/20
    = (1/(D^2 +2))(sin2x)      = (1/(−4+2))sin2x      = −(1/2)sin2x //.
$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{D}^{\mathrm{2}} +\mathrm{2}}\left(\mathrm{sin2x}\right) \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{−\mathrm{4}+\mathrm{2}}\mathrm{sin2x} \\ $$$$\:\:\:\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2x}\://. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *