Menu Close

1-decompose-at-simple-elements-U-n-n-x-n-1-x-n-1-2-calculste-0-2pi-dt-x-e-it-




Question Number 50406 by Abdo msup. last updated on 16/Dec/18
1) decompose at simple elements  U_n = ((n x^(n−1) )/(x^n −1))  2) calculste  ∫_0 ^(2π)    (dt/(x−e^(it) ))
1)decomposeatsimpleelementsUn=nxn1xn12)calculste02πdtxeit
Commented by Abdo msup. last updated on 25/Dec/18
let p(x)=x^n −1  the roots of p(x) are z_k =e^(i((2kπ)/n))   with k∈[[0,n−1]]  but U_n =Σ_(k=0) ^(n−1)   (λ_k /(x−z_k ))  λ_k =((nz_k ^(n−1) )/(p^′ (z_k ))) =(n/z_k ) (1/(n z_k ^(n−1) )) =1 ⇒ U_n =Σ_(k=0) ^(n−1)   (1/(x−z_k ))  =Σ_(k=0) ^(n−1)    (1/(x−e^(i((2kπ)/n)) ))
letp(x)=xn1therootsofp(x)arezk=ei2kπnwithk[[0,n1]]butUn=k=0n1λkxzkλk=nzkn1p(zk)=nzk1nzkn1=1Un=k=0n11xzk=k=0n11xei2kπn
Commented by Abdo msup. last updated on 25/Dec/18
2) changement e^(it) =z give  ∫_0 ^(2π)    (dt/(x−e^(it) )) =∫_(∣z∣=1)     (1/(x−z)) (dz/(iz))  =∫_(∣z∣=1)   ((−idz)/(xz −z^2 )) =∫_(∣z∣=1)    ((idz)/(z^2 −xz))  let  ϕ(z) =(i/(z^2 −xz)) =(i/(z(z−x))) so the polesx of ϕ are 0 and  x   if ∣x∣<1  ∫_(∣z∣=1)  ϕ(z)dz =2iπ(Res(ϕ,0)+Res(ϕ,x)}  Res(ϕ,0) =lim_(z→0) zϕ(z)=−(i/x)  Res(ϕ,x) =lim_(z→x) (z−x)ϕ(z)=(i/x)⇒  ∫_(∣z∣=1)  ϕ(z)dz =0  if ∣x∣>1   ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,0)  =2iπ(((−i)/x)) =((2π)/x)  (we suppose x≠0)  if x=0  ∫_0 ^(2π)    (dt/(x−e^(it) )) =−∫_0 ^(2π)  e^(−it) dt  =−[−(1/i) e^(−it) ]_0 ^(2π)  =(1/i)(1−1)=0
2)changementeit=zgive02πdtxeit=z∣=11xzdziz=z∣=1idzxzz2=z∣=1idzz2xzletφ(z)=iz2xz=iz(zx)sothepolesxofφare0andxifx∣<1z∣=1φ(z)dz=2iπ(Res(φ,0)+Res(φ,x)}Res(φ,0)=limz0zφ(z)=ixRes(φ,x)=limzx(zx)φ(z)=ixz∣=1φ(z)dz=0ifx∣>1z∣=1φ(z)dz=2iπRes(φ,0)=2iπ(ix)=2πx(wesupposex0)ifx=002πdtxeit=02πeitdt=[1ieit]02π=1i(11)=0

Leave a Reply

Your email address will not be published. Required fields are marked *