1-decompose-F-x-1-x-2-4-3-x-2-1-2-2-find-3-dx-x-2-4-3-x-2-1-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 130029 by mathmax by abdo last updated on 22/Jan/21 1)decomposeF(x)=1(x2−4)3(x2+1)22)find∫3∞dx(x2−4)3(x2+1)2 Commented by MJS_new last updated on 22/Jan/21 OstrogradskigivesF(x)=−x(17x4−331x2+1252)16000(x2−4)2(x2+1)−116000∫17x2−687(x−2)(x+2)(x2+1)dx==−x(17x4−331x2+1252)16000(x2−4)2(x2+1)+619320000∫1x+2−1x−2dx−111250∫dxx2+1==−x(17x4−331x2+1252)16000(x2−4)2(x2+1)+619320000ln∣x−2x+2∣−111250arctanx+C⇒answeris619320000ln5−111250arctan13−2180000 Commented by liberty last updated on 22/Jan/21 yourfavoritemethodsirhahaha Answered by Ar Brandon last updated on 22/Jan/21 f(a,b)f(a,b)=1(x2−a2)(x2+b2)=αx−a+βx+a+λx+μx2+b2=α(x+a)(x2+b2)+β(x−a)(x2+b2)+(λx+μ)(x2−a2)(x2−a2)(x2+b2)α=12a(a2+b2),β=1−2a(a2+b2)αab2−βab2−μa2=1⇒μa2=(\cancelab22\cancela(a2+b2))+(\cancelab22\cancela(a2+b2))−1⇒μ=−1(a2+b2),α+β+λ=0⇒λ=0f(a,b)=12a(a2+b2)(1x−a−1x+a)−1(a2+b2)⋅1x2+b2∫f(a,b)dx=ln∣x−a∣−ln∣x+a∣2a(a2+b2)−tan−1(b/x)b(a2+b2)+CF(x)=∫{∂3f(a,b)∂a3⋅∂2f(a,b)∂b2}dx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-64478Next Next post: please-anyone-help-me-to-solve-this-i-k-1-n-cos-k-2-pi-n-ii-k-1-n-sin-k-2-pi-n-thank-you- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.