Menu Close

1-decompose-F-x-1-x-2-4-3-x-2-1-2-2-find-3-dx-x-2-4-3-x-2-1-2-




Question Number 130029 by mathmax by abdo last updated on 22/Jan/21
1) decompose F(x)=(1/((x^2 −4)^3 (x^2  +1)^2 ))  2) find ∫_3 ^∞  (dx/((x^2 −4)^3 (x^2  +1)^2 ))
1)decomposeF(x)=1(x24)3(x2+1)22)find3dx(x24)3(x2+1)2
Commented by MJS_new last updated on 22/Jan/21
Ostrogradski gives  F (x) =−((x(17x^4 −331x^2 +1252))/(16000(x^2 −4)^2 (x^2 +1)))−(1/(16000))∫((17x^2 −687)/((x−2)(x+2)(x^2 +1)))dx=  =−((x(17x^4 −331x^2 +1252))/(16000(x^2 −4)^2 (x^2 +1)))+((619)/(320000))∫(1/(x+2))−(1/(x−2))dx−((11)/(1250))∫(dx/(x^2 +1))=  =−((x(17x^4 −331x^2 +1252))/(16000(x^2 −4)^2 (x^2 +1)))+((619)/(320000))ln ∣((x−2)/(x+2))∣ −((11)/(1250))arctan x +C  ⇒ answer is ((619)/(320000))ln 5 −((11)/(1250))arctan (1/3) −((21)/(80000))
OstrogradskigivesF(x)=x(17x4331x2+1252)16000(x24)2(x2+1)11600017x2687(x2)(x+2)(x2+1)dx==x(17x4331x2+1252)16000(x24)2(x2+1)+6193200001x+21x2dx111250dxx2+1==x(17x4331x2+1252)16000(x24)2(x2+1)+619320000lnx2x+2111250arctanx+Cansweris619320000ln5111250arctan132180000
Commented by liberty last updated on 22/Jan/21
your favorite method sir hahaha
yourfavoritemethodsirhahaha
Answered by Ar Brandon last updated on 22/Jan/21
f(a, b)  f(a, b)=(1/((x^2 −a^2 )(x^2 +b^2 )))=(α/(x−a))+(β/(x+a))+((λx+μ)/(x^2 +b^2 ))               =((α(x+a)(x^2 +b^2 )+β(x−a)(x^2 +b^2 )+(λx+μ)(x^2 −a^2 ))/((x^2 −a^2 )(x^2 +b^2 )))  α=(1/(2a(a^2 +b^2 ))) , β=(1/(−2a(a^2 +b^2 )))  αab^2 −βab^2 −μa^2 =1 ⇒μa^2 =(((ab^2 )/(2a(a^2 +b^2 ))))+(((ab^2 )/(2a(a^2 +b^2 ))))−1  ⇒μ=−(1/((a^2 +b^2 ))) , α+β+λ=0 ⇒λ=0  f(a,b)=(1/(2a(a^2 +b^2 )))((1/(x−a))−(1/(x+a)))−(1/((a^2 +b^2 )))∙(1/(x^2 +b^2 ))  ∫f(a,b)dx=((ln∣x−a∣−ln∣x+a∣)/(2a(a^2 +b^2 )))−((tan^(−1) (b/x))/(b(a^2 +b^2 )))+C  F(x)=∫{((∂^3 f(a,b))/∂a^3 )∙((∂^2 f(a,b))/∂b^2 )}dx
f(a,b)f(a,b)=1(x2a2)(x2+b2)=αxa+βx+a+λx+μx2+b2=α(x+a)(x2+b2)+β(xa)(x2+b2)+(λx+μ)(x2a2)(x2a2)(x2+b2)α=12a(a2+b2),β=12a(a2+b2)αab2βab2μa2=1μa2=(\cancelab22\cancela(a2+b2))+(\cancelab22\cancela(a2+b2))1μ=1(a2+b2),α+β+λ=0λ=0f(a,b)=12a(a2+b2)(1xa1x+a)1(a2+b2)1x2+b2f(a,b)dx=lnxalnx+a2a(a2+b2)tan1(b/x)b(a2+b2)+CF(x)={3f(a,b)a32f(a,b)b2}dx

Leave a Reply

Your email address will not be published. Required fields are marked *