Menu Close

1-decompose-F-x-1-x-4-x-3-5-2-calculate-5-dx-x-4-x-3-5-




Question Number 92971 by abdomathmax last updated on 10/May/20
1) decompose F(x) =(1/(x^4 (x−3)^5 ))  2)calculate ∫_5 ^(+∞)  (dx/(x^4 (x−3)^5 ))
1)decomposeF(x)=1x4(x3)52)calculate5+dxx4(x3)5
Commented by mathmax by abdo last updated on 11/May/20
1) F(x) =Σ_(i=1) ^4  (a_i /x^i ) +Σ_(i=1) ^5  (b_i /((x−3)^i ))       a_i ?  F(x) =(1/(x^4 (x−3)^5 ))  we find D_4 (0) for g(x) =(x−3)^(−5)   g(x) =Σ_(p=0) ^4  ((g^((p)) (0))/(p!))x^p   +(x^5 /(5!))ξ(x)=g(0)+x g^′ (0)+(x^2 /2)g^((2)) (0)+(x^3 /(3!))g^((3) (0)  +(x^4 /(4!))g^((4)) (0)+(x^5 /(5!))ξ(x)  g(0) =(−3)^(−5)   ,g^′ (x)=−5(x−3)^(−6)  →g^′ (0) =−5(−3)^(−6)   g^((2)) (x) =30(x−3)^(−7)  ⇒g^((2)) (0) =30(−3)^(−7)   g^((3)) (x) =−210 (x−3)^(−8)  ⇒g^((3)) (0) =−210 (−3)^(−8)   g^((4)) (x) =210×8(x−3)^(−9)  ⇒g^((4)) (x) =1680(−3)^(−9 )  ⇒  g(x) =(−3)^(−5)  −5(−3)^(−6)  x  +15(−3)^(−7)  x^2  −35 (−3)^(−8)  x^3   +((1680)/(4!))(−3)^(−9)  x^4  +(x^5 /(5!))ξ(x) ⇒  ((g(x))/x^4 ) =(((−3)^(−5) )/x^4 )−((5(−3)^(−6) )/x^3 ) +((15(−3)^(−7) )/x^2 )−((35(−3)^(−8) )/x)+((1680)/(4!))(−3)^(−9)  +xθ(x)  ⇒a_1 =−((35)/((−3)^8 )) ,  a_2 =((15)/((−3)^7 )) , a_3 =((−5)/((−3)^6 )) , a_4 =(1/((−3)^5 ))  let find b_i   we find D_4 (3) for h(x) =x^(−4)    h(x) =Σ_(p=0) ^4  ((h^((p)) (3))/(p!))(x−3)^p  +(((x−3)^5 )/(5!))ξ(x−3)  =h(3)+((x−3)/(1!)) h^′ (3) +(((x−3)^2 )/(2!))h^((2)) (3) +(((x−3)^3 )/(3!))h^((3)) (3) +(((x−3)^4 )/(4!))h^((4)) (3)+...  h(3) =3^(−4)  ,  h^′ (x) =−4x^(−5)  →h^′ (3) =−4 3^(−5)   h^((2)) (x) =20 x^(−6)  →h^((2)) (3) =20 .3^(−6)   h^((3)) (x) =−120 x^(−7)  →h^((3)) (3) =−120.3^(−7)   h^((4)) (x) =120.7 x^(−8)  =840 x^(−8)  ⇒  h(x) =3^(−4)  −4.3^(−5) (x−3) +10 .3^(−6) (x−3)^2  −20 .3^(−7)  (x−3)^3   +((840)/(4!))(x−3)^4  +...⇒  ((h(x))/((x−3)^5 )) =(1/(3^4 (x−3)^5 ))−(4/(.3^5 (x−3)^4 )) +((10)/(3^6 (x−3)^3 ))−((20)/(3^7 (x−3)^2 ))  +((840)/(4!(x−3))) +...⇒b_1 =((840)/(4!))  , b_2 =((20)/3^7 ) , b_3 =((10)/3^6 ) , b_4 =(4/3^5 ) , b_5 =(1/3^4 )  the composition of F(x) is known...  remark for a_i  we can use  D_3 (0) for g(x)=(x−3)^(−5)  only...
1)F(x)=i=14aixi+i=15bi(x3)iai?F(x)=1x4(x3)5wefindD4(0)forg(x)=(x3)5g(x)=p=04g(p)(0)p!xp+x55!ξ(x)=g(0)+xg(0)+x22g(2)(0)+x33!g(3(0)+x44!g(4)(0)+x55!ξ(x)g(0)=(3)5,g(x)=5(x3)6g(0)=5(3)6g(2)(x)=30(x3)7g(2)(0)=30(3)7g(3)(x)=210(x3)8g(3)(0)=210(3)8g(4)(x)=210×8(x3)9g(4)(x)=1680(3)9g(x)=(3)55(3)6x+15(3)7x235(3)8x3+16804!(3)9x4+x55!ξ(x)g(x)x4=(3)5x45(3)6x3+15(3)7x235(3)8x+16804!(3)9+xθ(x)a1=35(3)8,a2=15(3)7,a3=5(3)6,a4=1(3)5letfindbiwefindD4(3)forh(x)=x4h(x)=p=04h(p)(3)p!(x3)p+(x3)55!ξ(x3)=h(3)+x31!h(3)+(x3)22!h(2)(3)+(x3)33!h(3)(3)+(x3)44!h(4)(3)+h(3)=34,h(x)=4x5h(3)=435h(2)(x)=20x6h(2)(3)=20.36h(3)(x)=120x7h(3)(3)=120.37h(4)(x)=120.7x8=840x8h(x)=344.35(x3)+10.36(x3)220.37(x3)3+8404!(x3)4+h(x)(x3)5=134(x3)54.35(x3)4+1036(x3)32037(x3)2+8404!(x3)+b1=8404!,b2=2037,b3=1036,b4=435,b5=134thecompositionofF(x)isknownremarkforaiwecanuseD3(0)forg(x)=(x3)5only
Commented by abdomathmax last updated on 11/May/20
2) we can find this integral without using  decomposition  !  let I =∫_5 ^(+∞)  (dx/(x^4 (x−3)^5 )) ⇒  I =∫_5 ^(+∞)  (dx/(((x/(x−3)))^4 (x−3)^9 ))  changement (x/(x−3)) =t give  x =tx−3t ⇒(1−t)x =−3t ⇒x =((3t)/(t−1)) ⇒  (dx/dt) =((3(t−1)−3t)/((t−1)^2 )) =((−3)/((t−1)^2 )) and x−3 =((3t)/(t−1))−3  =((3t−3t+3)/(t−1)) =(3/((t−1))) ⇒  I  =∫_(5/2) ^1    ((−3dt)/((t−1)^2  t^4 ((3/(t−1)))^9 )) =(1/3^8 )∫_1 ^(5/2)  (((t−1)^9 )/((t−1)^(2 ) .t^4 ))dt  =(1/3^8 ) ∫_1 ^(5/2)   (((t−1)^7 )/t^4 )dt ⇒  3^8  ×I =∫_1 ^(5/2)  ((Σ_(k=0) ^7  C_7 ^k  t^k (−1)^(7−k) )/t^4 )dt  =−∫_1 ^(5/2)  Σ_(k=0) ^7  (−1)^k   C_7 ^k  t^(k−4)  dt  =−Σ_(k=0 and k≠3) ^7  (−1)^k  C_7 ^k   [(1/(k−3))t^(k−3) ]_1 ^(5/2)   + C_7 ^3  ∫_1 ^(5/2)  (dt/t)  =−Σ_(k=0 and k≠3) ^7  (((−1)^k )/(k−3)) C_7 ^k  {((5/2))^(k−3) −1}  +C_7 ^3  ln((5/2))   ⇒I = (1/3^8 ) Σ_(k=0) ^7  (((−1)^k  C_7 ^k )/(k−3))(1−((5/2))^(k−3) )  +C_7 ^3  ln((5/2)) .
2)wecanfindthisintegralwithoutusingdecomposition!letI=5+dxx4(x3)5I=5+dx(xx3)4(x3)9changementxx3=tgivex=tx3t(1t)x=3tx=3tt1dxdt=3(t1)3t(t1)2=3(t1)2andx3=3tt13=3t3t+3t1=3(t1)I=5213dt(t1)2t4(3t1)9=138152(t1)9(t1)2.t4dt=138152(t1)7t4dt38×I=152k=07C7ktk(1)7kt4dt=152k=07(1)kC7ktk4dt=k=0andk37(1)kC7k[1k3tk3]152+C73152dtt=k=0andk37(1)kk3C7k{(52)k31}+C73ln(52)I=138k=07(1)kC7kk3(1(52)k3)+C73ln(52).
Commented by abdomathmax last updated on 11/May/20
k≠3
k3

Leave a Reply

Your email address will not be published. Required fields are marked *