Menu Close

1-decompose-F-x-x-2-3-2x-3-5x-7-2-determine-F-x-dx-




Question Number 83250 by mathmax by abdo last updated on 29/Feb/20
1)decompose F(x)=((x^2 −3)/(2x^3  +5x+7))  2)determine ∫ F(x)dx
$$\left.\mathrm{1}\right){decompose}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\mathrm{2}{x}^{\mathrm{3}} \:+\mathrm{5}{x}+\mathrm{7}} \\ $$$$\left.\mathrm{2}\right){determine}\:\int\:{F}\left({x}\right){dx} \\ $$
Answered by MJS last updated on 29/Feb/20
((x^2 −3)/(2x^3 +5x+7))=(1/(11))(((15x−19)/(2x^2 −2x+7))−(2/(x+1)))=  =(1/(11))(((15(2x−1))/(4(x^2 −x+(7/2))))−((23)/(4(x^2 −x+(7/2))))−(2/(x+1)))  ∫((x^2 −3)/(2x^3 +5x+7))dx=  =(1/(11))(((15)/4)ln (x^2 −x+(7/2)) −((23)/(2(√(13))))arctan ((2x−1)/( (√(13)))) −2ln (x+1))=  =((15)/(44))ln (x^2 −x+(7/2)) −(2/(11))ln ∣x+1∣ −((23(√(13)))/(286))arctan (((√(13))(2x−1))/(13)) +C
$$\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}+\mathrm{7}}=\frac{\mathrm{1}}{\mathrm{11}}\left(\frac{\mathrm{15}{x}−\mathrm{19}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7}}−\frac{\mathrm{2}}{{x}+\mathrm{1}}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{11}}\left(\frac{\mathrm{15}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\mathrm{4}\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{7}}{\mathrm{2}}\right)}−\frac{\mathrm{23}}{\mathrm{4}\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{7}}{\mathrm{2}}\right)}−\frac{\mathrm{2}}{{x}+\mathrm{1}}\right) \\ $$$$\int\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}+\mathrm{7}}{dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{11}}\left(\frac{\mathrm{15}}{\mathrm{4}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{7}}{\mathrm{2}}\right)\:−\frac{\mathrm{23}}{\mathrm{2}\sqrt{\mathrm{13}}}\mathrm{arctan}\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{13}}}\:−\mathrm{2ln}\:\left({x}+\mathrm{1}\right)\right)= \\ $$$$=\frac{\mathrm{15}}{\mathrm{44}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{7}}{\mathrm{2}}\right)\:−\frac{\mathrm{2}}{\mathrm{11}}\mathrm{ln}\:\mid{x}+\mathrm{1}\mid\:−\frac{\mathrm{23}\sqrt{\mathrm{13}}}{\mathrm{286}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{13}}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\mathrm{13}}\:+{C} \\ $$
Commented by mathmax by abdo last updated on 29/Feb/20
thanks sir mjs
$${thanks}\:{sir}\:{mjs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *